901 resultados para Data dissemination and sharing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research concerns the Urban Living Idea Contest conducted by Creator Space™ of BASF SE during its 150th anniversary in 2015. The main objectives of the thesis are to provide a comprehensive analysis of the Urban Living Idea Contest (ULIC) and propose a number of improvement suggestions for future years. More than 4,000 data points were collected and analyzed to investigate the functionality of different elements of the contest. Furthermore, a set of improvement suggestions were proposed to BASF SE. Novelty of this thesis lies in the data collection and the original analysis of the contest, which identified its critical elements, as well as the areas that could be improved. The author of this research was a member of the organizing team and involved in the decision making process from the beginning until the end of the ULIC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Étude de cas / Case study

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Remote Data acquisition and analysing systems developed for fisheries and related environmental studies have been reported. It consists of three units. The first one namely multichannel remote data acquisition system is installed at the remote place powered by a rechargeable battery. It acquires and stores the 16 channel environmental data on a battery backed up RAM. The second unit called the Field data analyser is used for insitue display and analysis of the data stored in the backed up RAM. The third unit namely Laboratory data analyser is an IBM compatible PC based unit for detailed analysis and interpretation of the data after bringing the RAM unit to the laboratory. The data collected using the system has been analysed and presented in the form of a graph. The system timer operated at negligibly low current, switches on the power to the entire remote operated system at prefixed time interval of 2 hours.Data storage at remote site on low power battery backedupRAM and retrieval and analysis of data using PC are the special i ty of the system. The remote operated system takes about 7 seconds including the 5 second stabilization time to acquire and store data and is very ideal for remote operation on rechargeable bat tery. The system can store 16 channel data scanned at 2 hour interval for 10 days on 2K backed up RAM with memory expansion facility for 8K RAM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die zunehmende Vernetzung der Informations- und Kommunikationssysteme führt zu einer weiteren Erhöhung der Komplexität und damit auch zu einer weiteren Zunahme von Sicherheitslücken. Klassische Schutzmechanismen wie Firewall-Systeme und Anti-Malware-Lösungen bieten schon lange keinen Schutz mehr vor Eindringversuchen in IT-Infrastrukturen. Als ein sehr wirkungsvolles Instrument zum Schutz gegenüber Cyber-Attacken haben sich hierbei die Intrusion Detection Systeme (IDS) etabliert. Solche Systeme sammeln und analysieren Informationen von Netzwerkkomponenten und Rechnern, um ungewöhnliches Verhalten und Sicherheitsverletzungen automatisiert festzustellen. Während signatur-basierte Ansätze nur bereits bekannte Angriffsmuster detektieren können, sind anomalie-basierte IDS auch in der Lage, neue bisher unbekannte Angriffe (Zero-Day-Attacks) frühzeitig zu erkennen. Das Kernproblem von Intrusion Detection Systeme besteht jedoch in der optimalen Verarbeitung der gewaltigen Netzdaten und der Entwicklung eines in Echtzeit arbeitenden adaptiven Erkennungsmodells. Um diese Herausforderungen lösen zu können, stellt diese Dissertation ein Framework bereit, das aus zwei Hauptteilen besteht. Der erste Teil, OptiFilter genannt, verwendet ein dynamisches "Queuing Concept", um die zahlreich anfallenden Netzdaten weiter zu verarbeiten, baut fortlaufend Netzverbindungen auf, und exportiert strukturierte Input-Daten für das IDS. Den zweiten Teil stellt ein adaptiver Klassifikator dar, der ein Klassifikator-Modell basierend auf "Enhanced Growing Hierarchical Self Organizing Map" (EGHSOM), ein Modell für Netzwerk Normalzustand (NNB) und ein "Update Model" umfasst. In dem OptiFilter werden Tcpdump und SNMP traps benutzt, um die Netzwerkpakete und Hostereignisse fortlaufend zu aggregieren. Diese aggregierten Netzwerkpackete und Hostereignisse werden weiter analysiert und in Verbindungsvektoren umgewandelt. Zur Verbesserung der Erkennungsrate des adaptiven Klassifikators wird das künstliche neuronale Netz GHSOM intensiv untersucht und wesentlich weiterentwickelt. In dieser Dissertation werden unterschiedliche Ansätze vorgeschlagen und diskutiert. So wird eine classification-confidence margin threshold definiert, um die unbekannten bösartigen Verbindungen aufzudecken, die Stabilität der Wachstumstopologie durch neuartige Ansätze für die Initialisierung der Gewichtvektoren und durch die Stärkung der Winner Neuronen erhöht, und ein selbst-adaptives Verfahren eingeführt, um das Modell ständig aktualisieren zu können. Darüber hinaus besteht die Hauptaufgabe des NNB-Modells in der weiteren Untersuchung der erkannten unbekannten Verbindungen von der EGHSOM und der Überprüfung, ob sie normal sind. Jedoch, ändern sich die Netzverkehrsdaten wegen des Concept drif Phänomens ständig, was in Echtzeit zur Erzeugung nicht stationärer Netzdaten führt. Dieses Phänomen wird von dem Update-Modell besser kontrolliert. Das EGHSOM-Modell kann die neuen Anomalien effektiv erkennen und das NNB-Model passt die Änderungen in Netzdaten optimal an. Bei den experimentellen Untersuchungen hat das Framework erfolgversprechende Ergebnisse gezeigt. Im ersten Experiment wurde das Framework in Offline-Betriebsmodus evaluiert. Der OptiFilter wurde mit offline-, synthetischen- und realistischen Daten ausgewertet. Der adaptive Klassifikator wurde mit dem 10-Fold Cross Validation Verfahren evaluiert, um dessen Genauigkeit abzuschätzen. Im zweiten Experiment wurde das Framework auf einer 1 bis 10 GB Netzwerkstrecke installiert und im Online-Betriebsmodus in Echtzeit ausgewertet. Der OptiFilter hat erfolgreich die gewaltige Menge von Netzdaten in die strukturierten Verbindungsvektoren umgewandelt und der adaptive Klassifikator hat sie präzise klassifiziert. Die Vergleichsstudie zwischen dem entwickelten Framework und anderen bekannten IDS-Ansätzen zeigt, dass der vorgeschlagene IDSFramework alle anderen Ansätze übertrifft. Dies lässt sich auf folgende Kernpunkte zurückführen: Bearbeitung der gesammelten Netzdaten, Erreichung der besten Performanz (wie die Gesamtgenauigkeit), Detektieren unbekannter Verbindungen und Entwicklung des in Echtzeit arbeitenden Erkennungsmodells von Eindringversuchen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although short messaging service (SMS) through mobile phones has quickly gained popularity among most other sectors in India, its potential is not fully realised in the agriculture sector as a cost effective service to reach farmers and elicit desirable action. Despite the cost effectiveness, mobile messaging has remained a challenge in the farming sector in terms of its end use and action as far as extension systems are concerned. While there could be many influencing factors affecting the utility of mobile messages, this study assumed that educational level of farmers could be a major factor. A telephone survey was conducted to ascertain the influence of farmers’ education on the level of utilisation of mobile-based advisories. Farmers with higher education level showed better comprehension of advisories, actedupon the advisories more promptly and shared the information with fellow farmers more often than those with lower education level. There was a significant association between comprehending, sharing and acting upon advisories. This has implications to achieve enhanced extension reach with higher efficiency in terms of cost and time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The furious pace of Moore's Law is driving computer architecture into a realm where the the speed of light is the dominant factor in system latencies. The number of clock cycles to span a chip are increasing, while the number of bits that can be accessed within a clock cycle is decreasing. Hence, it is becoming more difficult to hide latency. One alternative solution is to reduce latency by migrating threads and data, but the overhead of existing implementations has previously made migration an unserviceable solution so far. I present an architecture, implementation, and mechanisms that reduces the overhead of migration to the point where migration is a viable supplement to other latency hiding mechanisms, such as multithreading. The architecture is abstract, and presents programmers with a simple, uniform fine-grained multithreaded parallel programming model with implicit memory management. In other words, the spatial nature and implementation details (such as the number of processors) of a parallel machine are entirely hidden from the programmer. Compiler writers are encouraged to devise programming languages for the machine that guide a programmer to express their ideas in terms of objects, since objects exhibit an inherent physical locality of data and code. The machine implementation can then leverage this locality to automatically distribute data and threads across the physical machine by using a set of high performance migration mechanisms. An implementation of this architecture could migrate a null thread in 66 cycles -- over a factor of 1000 improvement over previous work. Performance also scales well; the time required to move a typical thread is only 4 to 5 times that of a null thread. Data migration performance is similar, and scales linearly with data block size. Since the performance of the migration mechanism is on par with that of an L2 cache, the implementation simulated in my work has no data caches and relies instead on multithreading and the migration mechanism to hide and reduce access latencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various studies of asset markets have shown that traders are capable of learning and transmitting information through prices in many situations. In this paper we replace human traders with intelligent software agents in a series of simulated markets. Using these simple learning agents, we are able to replicate several features of the experiments with human subjects, regarding (1) dissemination of information from informed to uninformed traders, and (2) aggregation of information spread over different traders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of compositional data analysis through log ratio trans- formations corresponds to a multinomial logit model for the shares themselves. This model is characterized by the property of Independence of Irrelevant Alter- natives (IIA). IIA states that the odds ratio in this case the ratio of shares is invariant to the addition or deletion of outcomes to the problem. It is exactly this invariance of the ratio that underlies the commonly used zero replacement procedure in compositional data analysis. In this paper we investigate using the nested logit model that does not embody IIA and an associated zero replacement procedure and compare its performance with that of the more usual approach of using the multinomial logit model. Our comparisons exploit a data set that com- bines voting data by electoral division with corresponding census data for each division for the 2001 Federal election in Australia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A presentation on the collection and analysis of data taken from SOES 6018. This module aims to ensure that MSc Oceanography, MSc Marine Science, Policy & Law and MSc Marine Resource Management students are equipped with the skills they need to function as professional marine scientists, in addition to / in conjuction with the skills training in other MSc modules. The module covers training in fieldwork techniques, communication & research skills, IT & data analysis and professional development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is the reference lists for the resource set we have produced for the INFO2009 Assignment 2 Group Poster.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is the poster about the resource set we have produced for the INFO2009 Assignment 2 Group Poster.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is the poster about the resource set we have produced for the INFO2009 Assignment 2 Group Poster.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ECSS Talk

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Published on Jun 7, 2012 by icocomms This ICO training video helps answer questions about the Data Protection Act, its impact on the working environment and how to handle and protect people's information. (Produced by Central Office of Information, Crown Copyright 2006)