947 resultados para Data aggregation
Resumo:
New trends in biometrics are oriented to mobile devices in order to increase the overall security in daily actions like bank account access, e-commerce or even document protection within the mobile. However, applying biometrics to mobile devices imply challenging aspects in biometric data acquisition, feature extraction or private data storage. Concretely, this paper attempts to deal with the problem of hand segmentation given a picture of the hand in an unknown background, requiring an accurate result in terms of hand isolation. For the sake of user acceptability, no restrictions are done on background, and therefore, hand images can be taken without any constraint, resulting segmentation in an exigent task. Multiscale aggregation strategies are proposed in order to solve this problem due to their accurate results in unconstrained and complicated scenarios, together with their properties in time performance. This method is evaluated with a public synthetic database with 480000 images considering different backgrounds and illumination environments. The results obtained in terms of accuracy and time performance highlight their capability of being a suitable solution for the problem of hand segmentation in contact-less environments, outperforming competitive methods in literature like Lossy Data Compression image segmentation (LDC).
Resumo:
This paper presents an image segmentation algorithm based on Gaussian multiscale aggregation oriented to hand biometric applications. The method is able to isolate the hand from a wide variety of background textures such as carpets, fabric, glass, grass, soil or stones. The evaluation was carried out by using a publicly available synthetic database with 408,000 hand images in different backgrounds, comparing the performance in terms of accuracy and computational cost to two competitive segmentation methods existing in literature, namely Lossy Data Compression (LDC) and Normalized Cuts (NCuts). The results highlight that the proposed method outperforms current competitive segmentation methods with regard to computational cost, time performance, accuracy and memory usage.
Resumo:
Background: One of the main challenges for biomedical research lies in the computer-assisted integrative study of large and increasingly complex combinations of data in order to understand molecular mechanisms. The preservation of the materials and methods of such computational experiments with clear annotations is essential for understanding an experiment, and this is increasingly recognized in the bioinformatics community. Our assumption is that offering means of digital, structured aggregation and annotation of the objects of an experiment will provide necessary meta-data for a scientist to understand and recreate the results of an experiment. To support this we explored a model for the semantic description of a workflow-centric Research Object (RO), where an RO is defined as a resource that aggregates other resources, e.g., datasets, software, spreadsheets, text, etc. We applied this model to a case study where we analysed human metabolite variation by workflows. Results: We present the application of the workflow-centric RO model for our bioinformatics case study. Three workflows were produced following recently defined Best Practices for workflow design. By modelling the experiment as an RO, we were able to automatically query the experiment and answer questions such as “which particular data was input to a particular workflow to test a particular hypothesis?”, and “which particular conclusions were drawn from a particular workflow?”. Conclusions: Applying a workflow-centric RO model to aggregate and annotate the resources used in a bioinformatics experiment, allowed us to retrieve the conclusions of the experiment in the context of the driving hypothesis, the executed workflows and their input data. The RO model is an extendable reference model that can be used by other systems as well.
Resumo:
An initial stage of fibrillogenesis in solutions of glutathione S-transferase-huntingtin (GST-HD) fusion proteins has been studied by using dynamic light scattering. Two GST-HD systems with poly-l-glutamine (polyGln) extensions of different lengths (20 and 51 residues) have been examined. For both systems, kinetics of z-average translation diffusion coefficients (Dapp) and their angular dependence have been obtained. Our data reveal that aggregation does occur in both GST-HD51 and GST-HD20 solutions, but that it is much more pronounced in the former. Thus, our approach provides a powerful tool for the quantitative assay of GST-HD fibrillogenesis in vitro.
Resumo:
The equilibrium dissociation of recombinant human IFN-γ was monitored as a function of pressure and sucrose concentration. The partial molar volume change for dissociation was −209 ± 13 ml/mol of dimer. The specific molar surface area change for dissociation was 12.7 ± 1.6 nm2/molecule of dimer. The first-order aggregation rate of recombinant human IFN-γ in 0.45 M guanidine hydrochloride was studied as a function of sucrose concentration and pressure. Aggregation proceeded through a transition-state species, N*. Sucrose reduced aggregation rate by shifting the equilibrium between native state (N) and N* toward the more compact N. Pressure increased aggregation rate through increased solvation of the protein, which exposes more surface area, thus shifting the equilibrium away from N toward N*. The changes in partial molar volume and specific molar surface area between the N* and N were −41 ± 9 ml/mol of dimer and 3.5 ± 0.2 nm2/molecule, respectively. Thus, the structural change required for the formation of the transition state for aggregation is small relative to the difference between N and the dissociated state. Changes in waters of hydration were estimated from both specific molar surface area and partial molar volume data. From partial molar volume data, estimates were 25 and 128 mol H2O/mol dimer for formation of the aggregation transition state and for dissociation, respectively. From surface area data, estimates were 27 and 98 mol H2O/mol dimer. Osmotic stress theory yielded values ≈4-fold larger for both transitions.
Resumo:
The aggregation operator have been considered from a computable point of view. The important condition that the computation is friendly when portions of data are inserted o deleted to the list of values to aggregate is considered.
Resumo:
The integration of geo-information from multiple sources and of diverse nature in developing mineral favourability indexes (MFIs) is a well-known problem in mineral exploration and mineral resource assessment. Fuzzy set theory provides a convenient framework to combine and analyse qualitative and quantitative data independently of their source or characteristics. A novel, data-driven formulation for calculating MFIs based on fuzzy analysis is developed in this paper. Different geo-variables are considered fuzzy sets and their appropriate membership functions are defined and modelled. A new weighted average-type aggregation operator is then introduced to generate a new fuzzy set representing mineral favourability. The membership grades of the new fuzzy set are considered as the MFI. The weights for the aggregation operation combine the individual membership functions of the geo-variables, and are derived using information from training areas and L, regression. The technique is demonstrated in a case study of skarn tin deposits and is used to integrate geological, geochemical and magnetic data. The study area covers a total of 22.5 km(2) and is divided into 349 cells, which include nine control cells. Nine geo-variables are considered in this study. Depending on the nature of the various geo-variables, four different types of membership functions are used to model the fuzzy membership of the geo-variables involved. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We investigate whether relative contributions of genetic and shared environmental factors are associated with an increased risk in melanoma. Data from the Queensland Familial Melanoma Project comprising 15,907 subjects arising from 1912 families were analyzed to estimate the additive genetic, common and unique environmental contributions to variation in the age at onset of melanoma. Two complementary approaches for analyzing correlated time-to-onset family data were considered: the generalized estimating equations (GEE) method in which one can estimate relationship-specific dependence simultaneously with regression coefficients that describe the average population response to changing covariates; and a subject-specific Bayesian mixed model in which heterogeneity in regression parameters is explicitly modeled and the different components of variation may be estimated directly. The proportional hazards and Weibull models were utilized, as both produce natural frameworks for estimating relative risks while adjusting for simultaneous effects of other covariates. A simple Markov Chain Monte Carlo method for covariate imputation of missing data was used and the actual implementation of the Bayesian model was based on Gibbs sampling using the free ware package BUGS. In addition, we also used a Bayesian model to investigate the relative contribution of genetic and environmental effects on the expression of naevi and freckles, which are known risk factors for melanoma.
Resumo:
In this study, we investigated the size, submicrometer-scale structure, and aggregation state of ZnS formed by sulfate-reducing bacteria (SRB) in a SRB-dominated biofilm growing on degraded wood in cold (Tsimilar to8degreesC), circumneutral-pH (7.2-8.5) waters draining from an abandoned, carbonate-hosted Pb-Zn mine. High-resolution transmission electron microscope (HRTEM) data reveal that the earliest biologically induced precipitates are crystalline ZnS nanoparticles 1-5 nm in diameter. Although most nanocrystals have the sphalerite structure, nanocrystals of wurtzite are also present, consistent with a predicted size dependence for ZnS phase stability. Nearly all the nanocrystals are concentrated into 1-5 mum diameter spheroidal aggregates that display concentric banding patterns indicative of episodic precipitation and flocculation. Abundant disordered stacking sequences and faceted, porous crystal-aggregate morphologies are consistent with aggregation-driven growth of ZnS nanocrystals prior to and/or during spheroid formation. Spheroids are typically coated by organic polymers or associated with microbial cellular surfaces, and are concentrated roughly into layers within the biofilm. Size, shape, structure, degree of crystallinity, and polymer associations will all impact ZnS solubility, aggregation and coarsening behavior, transport in groundwater, and potential for deposition by sedimentation. Results presented here reveal nanometer- to micrometer-scale attributes of biologically induced ZnS formation likely to be relevant to sequestration via bacterial sulfate reduction (BSR) of other potential contaminant metal(loid)s, such as Pb2+, Cd2+, As3+ and Hg2+, into metal sulfides. The results highlight the importance of basic mineralogical information for accurate prediction and monitoring of long-term contaminant metal mobility and bioavailability in natural and constructed bioremediation systems. Our observations also provoke interesting questions regarding the role of size-dependent phase stability in biomineralization and provide new insights into the origin of submicrometer- to millimeter-scale petrographic features observed in low-temperature sedimentary sulfide ore deposits.
Resumo:
Simultaneous analysis of handedness data from 35 samples of twins (with a combined sample size of 21,127 twin pairs) found a small but significant additive genetic effect accounting for 25.47% of the variance (95% confidence interval [CI] 15.69-29.51%). No common environmental influences were detected (C = 0.00; 95% Cl 0.00-7.67%), with the majority of the variance, 74.53%, explained by factors unique to the individual (95% Cl 70.49-78.67%). No significant heterogeneity was observed within studies that used similar methods to assess handedness, or across studies that used different methods. At an individual level the majority of studies had insufficient power to reject a purely unique environmental model due to insufficient power to detect familial aggregation. This lack of power is seldom mentioned within studies, and has contributed to the misconception that twin studies of handedness are not informative.
Resumo:
This article applies methods of latent class analysis (LCA) to data on lifetime illicit drug use in order to determine whether qualitatively distinct classes of illicit drug users can be identified. Self-report data on lifetime illicit drug use (cannabis, stimulants, hallucinogens, sedatives, inhalants, cocaine, opioids and solvents) collected from a sample of 6265 Australian twins (average age 30 years) were analyzed using LCA. Rates of childhood sexual and physical abuse, lifetime alcohol and tobacco dependence, symptoms of illicit drug abuse/dependence and psychiatric comorbidity were compared across classes using multinomial logistic regression. LCA identified a 5-class model: Class 1 (68.5%) had low risks of the use of all drugs except cannabis; Class 2 (17.8%) had moderate risks of the use of all drugs; Class 3 (6.6%) had high rates of cocaine, other stimulant and hallucinogen use but lower risks for the use of sedatives or opioids. Conversely, Class 4 (3.0%) had relatively low risks of cocaine, other stimulant or hallucinogen use but high rates of sedative and opioid use. Finally, Class 5 (4.2%) had uniformly high probabilities for the use of all drugs. Rates of psychiatric comorbidity were highest in the polydrug class although the sedative/opioid class had elevated rates of depression/suicidal behaviors and exposure to childhood abuse. Aggregation of population-level data may obscure important subgroup differences in patterns of illicit drug use and psychiatric comorbidity. Further exploration of a 'self-medicating' subgroup is needed.
Resumo:
In some contexts data envelopment analysis (DEA) gives poor discrimination on the performance of units. While this may reflect genuine uniformity of performance between units, it may also reflect lack of sufficient observations or other factors limiting discrimination on performance between units. In this paper, we present an overview of the main approaches that can be used to improve the discrimination of DEA. This includes simple methods such as the aggregation of inputs or outputs, the use of longitudinal data, more advanced methods such as the use of weight restrictions, production trade-offs and unobserved units, and a relatively new method based on the use of selective proportionality between the inputs and outputs. © 2007 Springer Science+Business Media, LLC.
Resumo:
We discuss aggregation of data from neuropsychological patients and the process of evaluating models using data from a series of patients. We argue that aggregation can be misleading but not aggregating can also result in information loss. The basis for combining data needs to be theoretically defined, and the particular method of aggregation depends on the theoretical question and characteristics of the data. We present examples, often drawn from our own research, to illustrate these points. We also argue that statistical models and formal methods of model selection are a useful way to test theoretical accounts using data from several patients in multiple-case studies or case series. Statistical models can often measure fit in a way that explicitly captures what a theory allows; the parameter values that result from model fitting often measure theoretically important dimensions and can lead to more constrained theories or new predictions; and model selection allows the strength of evidence for models to be quantified without forcing this into the artificial binary choice that characterizes hypothesis testing methods. Methods that aggregate and then formally model patient data, however, are not automatically preferred to other methods. Which method is preferred depends on the question to be addressed, characteristics of the data, and practical issues like availability of suitable patients, but case series, multiple-case studies, single-case studies, statistical models, and process models should be complementary methods when guided by theory development.
Resumo:
This paper presents a predictive aggregation rate model for spray fluidized bed melt granulation. The aggregation rate constant was derived from probability analysis of particle–droplet contact combined with time scale analysis of droplet solidification and granule–granule collision rates. The latter was obtained using the principles of kinetic theory of granular flow (KTGF). The predicted aggregation rate constants were validated by comparison with reported experimental data for a range of binder spray rate, binder droplet size and operating granulator temperature. The developed model is particularly useful for predicting particle size distributions and growth using population balance equations (PBEs).
Resumo:
Aggregation and caking of particles are common severe problems in many operations and processing of granular materials, where granulated sugar is an important example. Prevention of aggregation and caking of granular materials requires a good understanding of moisture migration and caking mechanisms. In this paper, the modeling of solid bridge formation between particles is introduced, based on moisture migration of atmospheric moisture into containers packed with granular materials through vapor evaporation and condensation. A model for the caking process is then developed, based on the growth of liquid bridges (during condensation), and their hardening and subsequent creation of solid bridges (during evaporation). The predicted caking strengths agree well with some available experimental data on granulated sugar under storage conditions.