936 resultados para Data Analytics
Resumo:
An ongoing challenge for Learning Analytics research has been the scalable derivation of user interaction data from multiple technologies. The complexities associated with this challenge are increasing as educators embrace an ever growing number of social and content related technologies. The Experience API (xAPI) alongside the development of user specific record stores has been touted as a means to address this challenge, but a number of subtle considerations must be made when using xAPI in Learning Analytics. This paper provides a general overview to the complexities and challenges of using xAPI in a general systemic analytics solution - called the Connected Learning Analytics (CLA) toolkit. The importance of design is emphasised, as is the notion of common vocabularies and xAPI Recipes. Early decisions about vocabularies and structural relationships between statements can serve to either facilitate or handicap later analytics solutions. The CLA toolkit case study provides us with a way of examining both the strengths and the weaknesses of the current xAPI specification, and we conclude with a proposal for how xAPI might be improved by using JSON-LD to formalise Recipes in a machine readable form.
Resumo:
This demonstration introduces the Connected Learning Analytics (CLA) Toolkit. The CLA toolkit harvests data about student participation in specified learning activities across standard social media environments, and presents information about the nature and quality of the learning interactions.
Resumo:
In competitive combat sporting environments like boxing, the statistics on a boxer's performance, including the amount and type of punches thrown, provide a valuable source of data and feedback which is routinely used for coaching and performance improvement purposes. This paper presents a robust framework for the automatic classification of a boxer's punches. Overhead depth imagery is employed to alleviate challenges associated with occlusions, and robust body-part tracking is developed for the noisy time-of-flight sensors. Punch recognition is addressed through both a multi-class SVM and Random Forest classifiers. A coarse-to-fine hierarchical SVM classifier is presented based on prior knowledge of boxing punches. This framework has been applied to shadow boxing image sequences taken at the Australian Institute of Sport with 8 elite boxers. Results demonstrate the effectiveness of the proposed approach, with the hierarchical SVM classifier yielding a 96% accuracy, signifying its suitability for analysing athletes punches in boxing bouts.
Resumo:
Big Data and Learning Analytics’ promise to revolutionise educational institutions, endeavours, and actions through more and better data is now compelling. Multiple, and continually updating, data sets produce a new sense of ‘personalised learning’. A crucial attribute of the datafication, and subsequent profiling, of learner behaviour and engagement is the continual modification of the learning environment to induce greater levels of investment on the parts of each learner. The assumption is that more and better data, gathered faster and fed into ever-updating algorithms, provide more complete tools to understand, and therefore improve, learning experiences through adaptive personalisation. The argument in this paper is that Learning Personalisation names a new logistics of investment as the common ‘sense’ of the school, in which disciplinary education is ‘both disappearing and giving way to frightful continual training, to continual monitoring'.
Resumo:
Since 2007, close collaboration between the Learning and Teaching Unit’s Academic Quality and Standards team and the Department of Reporting and Analysis’ Business Objects team resulted in a generational approach to reporting where QUT established a place of trust. This place of trust is where data owners are confident in date storage, data integrity, reported and shared. While the role of the Department of Reporting and Analysis focused on the data warehouse, data security and publication of reports, the Academic Quality and Standards team focused on the application of learning analytics to solve academic research questions and improve student learning. Addressing questions such as: • Are all students who leave course ABC academically challenged? • Do the students who leave course XYZ stay within the faculty, university or leave? • When students withdraw from a unit do they stay enrolled on full or part load or leave? • If students enter through a particular pathway, what is their experience in comparison to other pathways? • With five years historic reporting, can a two-year predictive forecast provide any insight? In answering these questions, the Academic Quality and Standards team then developed prototype data visualisation through curriculum conversations with academic staff. Where these enquiries were applicable more broadly this information would be brought into the standardised reporting for the benefit of the whole institution. At QUT an annual report to the executive committees allows all stakeholders to record the performance and outcomes of all courses in a snapshot in time or use this live report at any point during the year. This approach to learning analytics was awarded the Awarded 2014 ATEM/Campus Review Best Practice Awards in Tertiary Education Management for The Unipromo Award for Excellence in Information Technology Management.
Resumo:
In modern process industry, it is often difficult to analyze a manufacture process due to its umerous time-series data. Analysts wish to not only interpret the evolution of data over time in a working procedure, but also examine the changes in the whole production process through time. To meet such analytic requirements, we have developed ProcessLine, an interactive visualization tool for a large amount of time-series data in process industry. The data are displayed in a fisheye timeline. ProcessLine provides good overviews for the whole production process and details for the focused working procedure. A preliminary user study using beer industry production data has shown that the tool is effective.
Towards a situation-awareness-driven design of operational business intelligence & analytics systems
Resumo:
With the swamping and timeliness of data in the organizational context, the decision maker’s choice of an appropriate decision alternative in a given situation is defied. In particular, operational actors are facing the challenge to meet business-critical decisions in a short time and at high frequency. The construct of Situation Awareness (SA) has been established in cognitive psychology as a valid basis for understanding the behavior and decision making of human beings in complex and dynamic systems. SA gives decision makers the possibility to make informed, time-critical decisions and thereby improve the performance of the respective business process. This research paper leverages SA as starting point for a design science project for Operational Business Intelligence and Analytics systems and suggests a first version of design principles.
Resumo:
This is the first report from ALT’s new Annual Survey launched in December 2014. This survey was primarily for ALT members (individual or at an organisation which is an organisational member) it could however also be filled in by others, perhaps those interested in taking out membership. The report and data highlight emerging work areas that are important to the survey respondents. Analysis of the survey responses indicates a number of areas ALT should continue to support and develop. Priorities for the membership are ‘Intelligent use of learning technology’ and ‘Research and practice’, aligned to this is the value placed by respondent’s on by communication via the ALT Newsletter/News, social media and Research in Learning Technology. The survey also reveals ‘Data and Analytics’ and ‘Open Education’ are areas where the majority of respondents are finding are becoming increasingly important. As such our community may benefit from development opportunities ALT can provide. The survey is also a reminder that ALT has an essential role in enabling members to develop research and practice in areas which might be considered as minority interest. For example whilst the majority of respondents didn't indicate areas such as ‘Digital and Open Badges’, and ‘Game Based Learning’ as important there are still members who consider these areas are very significant and becoming increasingly valuable and as such ALT will continue to better support these groups within our community. Whilst ALT has conducted previous surveys of ALT membership this is the first iteration in this form. ALT has committed to surveying the sector on an annual basis, refining the core question set but trying to preserve an opportunity for longitudinal analysis.
Resumo:
The foundational concept of Network Enabled Capability relies on effective, timely information sharing. This information is used in analysis, trade and scenario studies, and ultimately decision-making. In this paper, the concept of visual analytics is explored as an enabler to facilitate rapid, defensible, and superior decision-making. By coupling analytical reasoning with the exceptional human capability to rapidly internalize and understand visual data, visual analytics allows individual and collaborative decision-making to occur in the face of vast and disparate data, time pressures, and uncertainty. An example visual analytics framework is presented in the form of a decision-making environment centered on the Lockheed C-5A and C-5M aircraft. This environment allows rapid trade studies to be conducted on design, logistics, and capability within the aircraft?s operational roles. Through this example, the use of a visual analytics decision-making environment within a military environment is demonstrated.
Resumo:
Recent technological advances have increased the quantity of movement data being recorded. While valuable knowledge can be gained by analysing such data, its sheer volume creates challenges. Geovisual analytics, which helps the human cognition process by using tools to reason about data, offers powerful techniques to resolve these challenges. This paper introduces such a geovisual analytics environment for exploring movement trajectories, which provides visualisation interfaces, based on the classic space-time cube. Additionally, a new approach, using the mathematical description of motion within a space-time cube, is used to determine the similarity of trajectories and forms the basis for clustering them. These techniques were used to analyse pedestrian movement. The results reveal interesting and useful spatiotemporal patterns and clusters of pedestrians exhibiting similar behaviour.
Resumo:
NanoStreams explores the design, implementation,and system software stack of micro-servers aimed at processingdata in-situ and in real time. These micro-servers can serve theemerging Edge computing ecosystem, namely the provisioningof advanced computational, storage, and networking capabilitynear data sources to achieve both low latency event processingand high throughput analytical processing, before consideringoff-loading some of this processing to high-capacity datacentres.NanoStreams explores a scale-out micro-server architecture thatcan achieve equivalent QoS to that of conventional rack-mountedservers for high-capacity datacentres, but with dramaticallyreduced form factors and power consumption. To this end,NanoStreams introduces novel solutions in programmable & con-figurable hardware accelerators, as well as the system softwarestack used to access, share, and program those accelerators.Our NanoStreams micro-server prototype has demonstrated 5.5×higher energy-efficiency than a standard Xeon Server. Simulationsof the microserver’s memory system extended to leveragehybrid DDR/NVM main memory indicated 5× higher energyefficiencythan a conventional DDR-based system.
Resumo:
Revenue Management’s most cited definitions is probably “to sell the right accommodation to the right customer, at the right time and the right price, with optimal satisfaction for customers and hoteliers”. Smart Revenue Management (SRM) is a project, which aims the development of smart automatic techniques for an efficient optimization of occupancy and rates of hotel accommodations, commonly referred to, as revenue management. One of the objectives of this project is to demonstrate that the collection of Big Data, followed by an appropriate assembly of functionalities, will make possible to generate a Data Warehouse necessary to produce high quality business intelligence and analytics. This will be achieved through the collection of data extracted from a variety of sources, including from the web. This paper proposes a three stage framework to develop the Big Data Warehouse for the SRM. Namely, the compilation of all available information, in the present case, it was focus only the extraction of information from the web by a web crawler – raw data. The storing of that raw data in a primary NoSQL database, and from that data the conception of a set of functionalities, rules, principles and semantics to select, combine and store in a secondary relational database the meaningful information for the Revenue Management (Big Data Warehouse). The last stage will be the principal focus of the paper. In this context, clues will also be giving how to compile information for Business Intelligence. All these functionalities contribute to a holistic framework that, in the future, will make it possible to anticipate customers and competitor’s behavior, fundamental elements to fulfill the Revenue Management
Resumo:
Thesis (Master's)--University of Washington, 2016-03
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
Objectives: An email information literacy program has been effective for over a decade at Université de Montréal’s Health Library. Students periodically receive messages highlighting the content of guides on the library’s website. We wish to evaluate, using Google Analytics, the effects of the program on specific webpage statistics. Using the data collected, we may pinpoint popular guides as well as others that need improvement. Methods: In the program, first and second-year medical (MD) or dental (DMD) students receive eight bi-monthly email messages. The DMD mailing list also includes graduate students and professors. Enrollment to the program is optional for MDs, but mandatory for DMDs. Google Analytics (GA) profiles have been configured for the libraries websites to collect visitor statistics since June 2009. The GA Links Builder was used to design unique links specifically associated with the originating emails. This approach allowed us to gather information on guide usage, such as the visitor’s program of study, duration of page viewing, number of pages viewed per visit, as well as browsing data. We also followed the evolution of clicks on GA unique links over time, as we believed that users may keep the library's emails and refer to them to access specific information. Results: The proportion of students who actually clicked the email links was, on average, less than 5%. MD and DMD students behaved differently regarding guide views, number of pages visited and length of time on the site. The CINAHL guide was the most visited for DMD students whereas MD students consulted the Pharmaceutical information guide most often. We noted that some students visited referred guides several weeks after receiving messages, thus keeping them for future reference; browsing to additional pages on the library website was also frequent. Conclusion: The mitigated success of the program prompted us to directly survey students on the format, frequency and usefulness of messages. The information gathered from GA links as well as from the survey will allow us to redesign our web content and modify our email information literacy program so that messages are more attractive, timely and useful for students.