959 resultados para Daniels, Norm
Resumo:
While there has been much work on developing frameworks and models of norms and normative systems, consideration of the impact of norms on the practical reasoning of agents has attracted less attention. The problem is that traditional agent architectures and their associated languages provide no mechanism to adapt an agent at runtime to norms constraining their behaviour. This is important because if BDI-type agents are to operate in open environments, they need to adapt to changes in the norms that regulate such environments. In response, in this paper we provide a technique to extend BDI agent languages, by enabling them to enact behaviour modification at runtime in response to newly accepted norms. Our solution consists of creating new plans to comply with obligations and suppressing the execution of existing plans that violate prohibitions. We demonstrate the viability of our approach through an implementation of our solution in the AgentSpeak(L) language.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Linear Matrix Inequalities (LMIs) is a powerful too] that has been used in many areas ranging from control engineering to system identification and structural design. There are many factors that make LMI appealing. One is the fact that a lot of design specifications and constrains can be formulated as LMIs [1]. Once formulated in terms of LMIs a problem can be solved efficiently by convex optimization algorithms. The basic idea of the LMI method is to formulate a given problem as an optimization problem with linear objective function and linear matrix inequalities constrains. An intelligent structure involves distributed sensors and actuators and a control law to apply localized actions, in order to minimize or reduce the response at selected conditions. The objective of this work is to implement techniques of control based on LMIs applied to smart structures.
Resumo:
This paper addresses the problem of model reduction for uncertain discrete-time systems with convex bounded (polytope type) uncertainty. A reduced order precisely known model is obtained in such a way that the H2 and/or the H∞ guaranteed norm of the error between the original (uncertain) system and the reduced one is minimized. The optimization problems are formulated in terms of coupled (non-convex) LMIs - Linear Matrix Inequalities, being solved through iterative algorithms. Examples illustrate the results.
Resumo:
A branch and bound algorithm is proposed to solve the H2-norm model reduction problem for continuous-time linear systems, with conditions assuring convergence to the global optimum in finite time. The lower and upper bounds used in the optimization procedure are obtained through Linear Matrix Inequalities formulations. Examples illustrate the results.
Resumo:
In this work are presented the values found with the experimental testing, in the semi-elliptic leaf spring, utilizing 24 strain gages, distributed in five leaves of springs; these values have been compared to the calculated values found with the application of Norm SAE J788 (1982). The results showed discrepancy between the values measured and calculated and that the Norm is not indicated to determine the actuating stress in any point of any leaf of the leaf spring, but due to its simplicity and quickness of the process it presents good precision for the pre-development of the product. Copyright © 2002 Society of Automotive Engineers, Inc.
Resumo:
Nowadays there is great interest in damage identification using non destructive tests. Predictive maintenance is one of the most important techniques that are based on analysis of vibrations and it consists basically of monitoring the condition of structures or machines. A complete procedure should be able to detect the damage, to foresee the probable time of occurrence and to diagnosis the type of fault in order to plan the maintenance operation in a convenient form and occasion. In practical problems, it is frequent the necessity of getting the solution of non linear equations. These processes have been studied for a long time due to its great utility. Among the methods, there are different approaches, as for instance numerical methods (classic), intelligent methods (artificial neural networks), evolutions methods (genetic algorithms), and others. The characterization of damages, for better agreement, can be classified by levels. A new one uses seven levels of classification: detect the existence of the damage; detect and locate the damage; detect, locate and quantify the damages; predict the equipment's working life; auto-diagnoses; control for auto structural repair; and system of simultaneous control and monitoring. The neural networks are computational models or systems for information processing that, in a general way, can be thought as a device black box that accepts an input and produces an output. Artificial neural nets (ANN) are based on the biological neural nets and possess habilities for identification of functions and classification of standards. In this paper a methodology for structural damages location is presented. This procedure can be divided on two phases. The first one uses norms of systems to localize the damage positions. The second one uses ANN to quantify the severity of the damage. The paper concludes with a numerical application in a beam like structure with five cases of structural damages with different levels of severities. The results show the applicability of the presented methodology. A great advantage is the possibility of to apply this approach for identification of simultaneous damages.
Resumo:
A branch and bound algorithm is proposed to solve the [image omitted]-norm model reduction problem for continuous and discrete-time linear systems, with convergence to the global optimum in a finite time. The lower and upper bounds in the optimization procedure are described by linear matrix inequalities (LMI). Also proposed are two methods with which to reduce the convergence time of the branch and bound algorithm: the first one uses the Hankel singular values as a sufficient condition to stop the algorithm, providing to the method a fast convergence to the global optimum. The second one assumes that the reduced model is in the controllable or observable canonical form. The [image omitted]-norm of the error between the original model and the reduced model is considered. Examples illustrate the application of the proposed method.
Resumo:
Reaction norm models have been widely used to study genotype by environment interaction (G × E) in animal breeding. The objective of this study was to describe environmental sensitivity across first lactation in Brazilian Holstein cows using a reaction norm approach. A total of 50,168 individual monthly test day (TD) milk yields (10 test days) from 7476 complete first lactations of Holstein cattle were analyzed. The statistical models for all traits (10 TDs and for 305-day milk yield) included the fixed effects of contemporary group, age of cow (linear and quadratic effects), and days in milk (linear effect), except for 305-day milk yield. A hierarchical reaction norm model (HRNM) based on the unknown covariate was used. The present study showed the presence of G × E in milk yield across first lactation of Holstein cows. The variation in the heritability estimates implies differences in the response to selection depending on the environment where the animals of this population are evaluated. In the average environment, the heritabilities for all traits were rather similar, in range from 0.02 to 0.63. The scaling effect of G × E predominated throughout most of lactation. Particularly during the first 2 months of lactation, G × E caused reranking of breeding values. It is therefore important to include the environmental sensitivity of animals according to the phase of lactation in the genetic evaluations of Holstein cattle in tropical environments.
Resumo:
A systematic approach to model nonlinear systems using norm-bounded linear differential inclusions (NLDIs) is proposed in this paper. The resulting NLDI model is suitable for the application of linear control design techniques and, therefore, it is possible to fulfill certain specifications for the underlying nonlinear system, within an operating region of interest in the state-space, using a linear controller designed for this NLDI model. Hence, a procedure to design a dynamic output feedback controller for the NLDI model is also proposed in this paper. One of the main contributions of the proposed modeling and control approach is the use of the mean-value theorem to represent the nonlinear system by a linear parameter-varying model, which is then mapped into a polytopic linear differential inclusion (PLDI) within the region of interest. To avoid the combinatorial problem that is inherent of polytopic models for medium- and large-sized systems, the PLDI is transformed into an NLDI, and the whole process is carried out ensuring that all trajectories of the underlying nonlinear system are also trajectories of the resulting NLDI within the operating region of interest. Furthermore, it is also possible to choose a particular structure for the NLDI parameters to reduce the conservatism in the representation of the nonlinear system by the NLDI model, and this feature is also one important contribution of this paper. Once the NLDI representation of the nonlinear system is obtained, the paper proposes the application of a linear control design method to this representation. The design is based on quadratic Lyapunov functions and formulated as search problem over a set of bilinear matrix inequalities (BMIs), which is solved using a two-step separation procedure that maps the BMIs into a set of corresponding linear matrix inequalities. Two numerical examples are given to demonstrate the effectiveness of the proposed approach.
Resumo:
Stone Age research on Northern Europe frequently makes gross generalizations about the Mesolithic and Neolithic, although we still lack much basic knowledge on how the people lived. The transition from the Mesolithic to the Neolithic in Europe has been described as a radical shift from an economy dominated by marine resources to one solely dependent on farming. Both the occurrence and the geographical extent of such a drastic shift can be questioned, however. It is therefore important to start out at a more detailed level of evidence in order to present the overall picture, and to account for the variability even in such regional or chronological overviews. Fifteen Stone Age sites were included in this study, ranging chronologically from the Early Mesolithic to the Middle or Late Neolithic, c. 8300–2500 BC, and stretching geographically from the westernmost coast of Sweden to the easternmost part of Latvia within the confines of latitudes 55–59° N. The most prominent sites in terms of the number of human and faunal samples analysed are Zvejnieki, Västerbjers and Skateholm I–II. Human and faunal skeletal remains were subjected to stable carbon and nitrogen isotope analysis to study diet and ecology at the sites. Stable isotope analyses of human remains provide quantitative information on the relative importance of various food sources, an important addition to the qualitative data supplied by certain artefacts and structures or by faunal or botanical remains. A vast number of new radiocarbon dates were also obtained. In conclusion, a rich diversity in Stone Age dietary practice in the Baltic Region was demonstrated. Evidence ranging from the Early Mesolithic to the Late Neolithic show that neither chronology nor location alone can account for this variety, but that there are inevitably cultural factors as well. Food habits are culturally governed, and therefore we cannot automatically assume that people at similar sites will have the same diet. Stable isotope studies are very important here, since they tell us what people actually consumed, not only what was available, or what one single meal contained. We should not be deceived in inferring diet from ritually deposited remains, since things that were mentally important were not always important in daily life. Thus, although a ritual and symbolic norm may emphasize certain food categories, these may in fact contribute very little to the diet. By the progress of analysis of intra-individual variation, new data on life history changes have been produced, revealing mobility patterns, breastfeeding behaviour and certain dietary transitions. The inclusion of faunal data has proved invaluable for understanding the stable isotope ecology of a site, and thereby improve the precision of the interpretations of human stable isotope data. The special case of dogs, though, demonstrates that these animals are not useful for inferring human diet, since, due to the number of roles they possess in human society, dogs could deviate significantly from humans in their diet, and in several cases have been proved to do so. When evaluating radiocarbon data derived from human and animal remains from the Pitted-Ware site of Västerbjers on Gotland, the importance of establishing the stable isotope ecology of the site before making deductions on reservoir effects was further demonstrated. The main aim of this thesis has been to demonstrate the variation and diversity in human practices, challenging the view of a “monolithic” Stone Age. By looking at individuals and not only at populations, the whole range of human behaviour has been accounted for, also revealing discrepancies between norm and practice, which are frequently visible both in the archaeological record and in present-day human behaviour.
Resumo:
[EN]Approximate inverses, based on Frobenius norm minimization, of real nonsingular matrices are analyzed from a purely theoretical point of view. In this context, this paper provides several sufficient conditions, that assure us the possibility of improving (in the sense of the Frobenius norm) some given approximate inverses. Moreover, the optimal approximate inverses of matrix A ∈ R n×n , among all matrices belonging to certain subspaces of R n×n , are obtained. Particularly, a natural generalization of the classical normal equations of the system Ax = b is given, when searching for approximate inverses N 6= AT such that AN is symmetric and kAN − IkF < AAT − I F …
Resumo:
X-ray absorption spectroscopy (XAS) is a powerful means of investigation of structural and electronic properties in condensed -matter physics. Analysis of the near edge part of the XAS spectrum, the so – called X-ray Absorption Near Edge Structure (XANES), can typically provide the following information on the photoexcited atom: - Oxidation state and coordination environment. - Speciation of transition metal compounds. - Conduction band DOS projected on the excited atomic species (PDOS). Analysis of XANES spectra is greatly aided by simulations; in the most common scheme the multiple scattering framework is used with the muffin tin approximation for the scattering potential and the spectral simulation is based on a hypothetical, reference structure. This approach has the advantage of requiring relatively little computing power but in many cases the assumed structure is quite different from the actual system measured and the muffin tin approximation is not adequate for low symmetry structures or highly directional bonds. It is therefore very interesting and justified to develop alternative methods. In one approach, the spectral simulation is based on atomic coordinates obtained from a DFT (Density Functional Theory) optimized structure. In another approach, which is the object of this thesis, the XANES spectrum is calculated directly based on an ab – initio DFT calculation of the atomic and electronic structure. This method takes full advantage of the real many-electron final wavefunction that can be computed with DFT algorithms that include a core-hole in the absorbing atom to compute the final cross section. To calculate the many-electron final wavefunction the Projector Augmented Wave method (PAW) is used. In this scheme, the absorption cross section is written in function of several contributions as the many-electrons function of the finale state; it is calculated starting from pseudo-wavefunction and performing a reconstruction of the real-wavefunction by using a transform operator which contains some parameters, called partial waves and projector waves. The aim of my thesis is to apply and test the PAW methodology to the calculation of the XANES cross section. I have focused on iron and silicon structures and on some biological molecules target (myoglobin and cytochrome c). Finally other inorganic and biological systems could be taken into account for future applications of this methodology, which could become an important improvement with respect to the multiscattering approach.