896 resultados para Damage scenarios
Resumo:
Free fatty acids (FFAs) have been shown to produce alteration of heart rate variability (HRV) in healthy and diabetic individuals. Changes in HRV have been described in septic patients and in those with hyperglycemia and elevated plasma FFA levels. We studied if sepsis-induced heart damage and HRV alteration are associated with plasma FFA levels in patients. Thirty-one patients with sepsis were included. The patients were divided into two groups: survivors(n = 12) and nonsurvivors (n = 19). The following associations were investigated: (a) troponin I elevation and HRV reduction and (b) clinical evolution and HRV index, plasma troponin, and plasma FFA levels. Initial measurements of C-reactive protein and gravity Acute Physiology and Chronic Health Evaluation scores were similar in both groups. Overall, an increase in plasma troponin level was related to increased mortality risk. From the first day of study, the nonsurvivor group presented a reduced left ventricular stroke work systolic index and a reduced low frequency (LF) that is one of HRV indexes. The correlation coefficient for LF values and troponin was r(2) = 0.75 (P < 0.05). All patients presented elevated plasma FFA levels on the first day of the study (5.11 +/- 0.53 mg/mL), and this elevation was even greater in the nonsurvivor group compared with the survivors (6.88 +/- 0.13 vs. 3.85 +/- 0.48 mg/mL, respectively; P < 0.05). Cardiac damage was confirmed by measurement of plasma troponin I and histological analysis. Heart dysfunction was determined by left ventricular stroke work systolic index and HRV index in nonsurvivor patients. A relationship was found between plasma FFA levels, LFnu index, troponin levels, and histological changes. Plasma FFA levels emerged as possible cause of heart damage in sepsis.
Resumo:
Introduction: Recruitment maneuvers (RMs) seem to be more effective in extrapulmonary acute lung injury (ALI), caused mainly by sepsis, than in pulmonary ALI. Nevertheless, the maintenance of adequate volemic status is particularly challenging in sepsis. Since the interaction between volemic status and RMs is not well established, we investigated the effects of RMs on lung and distal organs in the presence of hypovolemia, normovolemia, and hypervolemia in a model of extrapulmonary lung injury induced by sepsis. Methods: ALI was induced by cecal ligation and puncture surgery in 66 Wistar rats. After 48 h, animals were anesthetized, mechanically ventilated and randomly assigned to 3 volemic status (n = 22/group): 1) hypovolemia induced by blood drainage at mean arterial pressure (MAP)approximate to 70 mmHg; 2) normovolemia (MAP approximate to 100 mmHg), and 3) hypervolemia with colloid administration to achieve a MAP approximate to 130 mmHg. In each group, animals were further randomized to be recruited (CPAP = 40 cm H(2)O for 40 s) or not (NR) (n = 11/group), followed by 1 h of protective mechanical ventilation. Echocardiography, arterial blood gases, static lung elastance (Est, L), histology (light and electron microscopy), lung wet-to-dry (W/D) ratio, interleukin (IL)-6, IL-1 beta, caspase-3, type III procollagen (PCIII), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) mRNA expressions in lung tissue, as well as lung and distal organ epithelial cell apoptosis were analyzed. Results: We observed that: 1) hypervolemia increased lung W/D ratio with impairment of oxygenation and Est, L, and was associated with alveolar and endothelial cell damage and increased IL-6, VCAM-1, and ICAM-1 mRNA expressions; and 2) RM reduced alveolar collapse independent of volemic status. In hypervolemic animals, RM improved oxygenation above the levels observed with the use of positive-end expiratory pressure (PEEP), but increased lung injury and led to higher inflammatory and fibrogenetic responses. Conclusions: Volemic status should be taken into account during RMs, since in this sepsis-induced ALI model hypervolemia promoted and potentiated lung injury compared to hypo-and normovolemia.
Resumo:
Mutations in PKD1 cause the majority of cases of autosomal dominant polycystic kidney disease (ADPKD). Because polycystin 1 modulates cell proliferation, cell differentiation, and apoptosis, its lower biologic activity observed in ADPKD might influence the degree of injury after renal ischemia/reperfusion. We induced renal ischemia/reperfusion in 10- to 12-wk-old male noncystic Pkd1(+/-) and wild-type mice. Compared with wild-type mice, heterozygous mice had higher fractional excretions of sodium and potassium and higher serum creatinine after 48 h. In addition, in heterozygous mice, also cortical damage, rates of apoptosis, and inflammatory infiltration into the interstitium at time points out to 14 d after injury all increased, as well as cell proliferation at 48 h and 7 d. The mRNA and protein expression of p21 was lower in heterozygous mice than wild-type mice at 48 h. After 6 wk, we observed dilated tubules, microcysts, and increased renal fibrosis in heterozygotes. The early mortality of heterozygotes was significantly higher than that of wild-type mice when we extended the duration of ischemia from 32 to 35 min. In conclusion, ischemia/reperfusion induces a more severe injury in kidneys of Pkd1-haploin-sufficient mice, a process that apparently depends on a relative deficiency of p2l activity, tubular dilation, and microcyst formation. These data suggest the possibility that humans with ADPKD from PKD1 mutations may be at greater risk for damage from renal ischemia/reperfusion injury.
Resumo:
Mucosal leishmaniasis (ML) is characterised by severe tissue destruction. Herein, we evaluated the involvement of the IL-17-type response in the inflammatory infiltrate of biopsy specimens from 17 ML patients. IL-17 and IL-17-inducing cytokines (IL-1 beta, IL-23, IL-6 and TGF-beta) were detected by immunohistochemistry in ML patients. IL-17(+) cells exhibited CD4(+), CD8(+) or CD14(+) phenotypes, and numerous IL-17(+) cells co-expressed the CC chemokine receptor 6 (CCR6). Neutrophils, a hallmark of Th17-mediated inflammation, were regularly detected in necrotic and perinecrotic areas and stained positive for neutrophil elastase, myeloperoxidase and MMP-9. Taken together, these observations demonstrate the existence of Th17 cells in ML lesions associated with neutrophils in areas of tissue injury and suggest that IL-17 is involved in ML pathogenesis.
Resumo:
The protozoan parasite Leishmania presents a dynamic and plastic genome in which gene amplification and chromosome translocations are common phenomena. Such plasticity hints at the necessity of dependable genome maintenance pathways. Eukaryotic cells have evolved checkpoint control systems that recognize altered DNA structures and halt cell cycle progression allowing DNA repair to take place. In these cells, the PCNA-related heterotrimeric complex formed by the proteins Hus1, Rad9, and Rad1 is known to participate in the early steps of replicative stress sensing and signaling. Here we show that the Hus1 homolog of Leishmania major is a nuclear protein that improves the cell capability to cope with replicative stress. Overexpression of LmHus1 confers resistance to the genotoxic drugs hydroxyurea (HU) and methyl methanesulfonate (MMS) and resistance to HU correlates to reduced net DNA damage upon LmHus1 expression. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Acute acoustic trauma (AAT) is a sudden sensorineural hearing loss caused by exposure of the hearing organ to acoustic overstimulation, typically an intense sound impulse, hyperbaric oxygen therapy (HOT), which favors repair of the microcirculation, can be potentially used to treat it. Hence, this study aimed to assess the effects of HOT on guinea pigs exposed to acoustic trauma. Fifteen guinea pigs were exposed to noise in the 4-kHz range with intensity of 110 dB sound level pressure for 72 h. They were assessed by brainstem auditory evoked potential (BAEP) and by distortion product otoacoustic emission (DPOAE) before and after exposure and after HOT at 2.0 absolute atmospheres for 1 h. The cochleae were then analyzed using scanning electron microscopy (SEM). There was a statistically significant difference in the signal-to-noise ratio of the DPOAE amplitudes for the 1- to 4-kHz frequencies and the SEM findings revealed damaged outer hair cells (OHC) after exposure to noise, with recovery after HOT (p = 0.0159), which did not occur on thresholds and amplitudes to BAEP (p = 0.1593). The electrophysiological BAEP data did not demonstrate effectiveness of HOT against AAT damage. However, there was improvement of the anatomical pattern of damage detected by SEM, with a significant reduction of the number of injured cochlear OHC and their functionality detected by DPOAE.
Resumo:
In this study, morphological changes in the optic nerve were determined by light microscopy in Wistar rats on an iron-deficient diet for 32 days or for 21 days followed by 10 days on an iron-recovery diet. The morphometric findings showed significantly fewer blood vessels and oligodendrocytes in the iron-deficient rats and iron-recovery rats than in the control group, as well as more astrocytes in the iron-recovery rats. Serum iron levels of the iron-deficient rats were significantly lower than those of the controls. On the other hand, iron-recovery rats had normal serum iron levels, but no change in the abnormal morphology of the myelinated axons and morphometric parameters. Our data indicate that iron is necessary for maintenance of the optic nerve cell structure, and morphological damage from iron-deficiency is not easily reverted by iron reposition.
Resumo:
BACKGROUND: Previous publications have documented the damage caused to red blood cells (RBCs) irradiated with X-rays produced by a linear accelerator and with gamma rays derived from a Cs-137 source. The biologic effects on RBCs of gamma rays from a Co-60 source, however, have not been characterized. STUDY DESIGN AND METHODS: This study investigated the effect of 3000 and 4000 cGy on the in vitro properties of RBCs preserved with preservative solution and irradiated with a cobalt teletherapy unit. A thermal device equipped with a data acquisition system was used to maintain and monitor the blood temperature during irradiation. The device was rotated at 2 r.p.m. in the irradiation beam by means of an automated system. The spatial distribution of the absorbed dose over the irradiated volume was obtained with phantom and thermoluminescent dosimeters (TLDs). Levels of Hb, K+, and Cl- were assessed by spectrophotometric techniques over a period of 45 days. The change in the topology of the RBC membrane was investigated by flow cytometry. RESULTS: Irradiation caused significant changes in the extracellular levels of K+ and Hb and in the organizational structure of the phospholipid bilayer of the RBC membrane. Blood temperature ranged from 2 to 4 degrees C during irradiation. Rotation at 2 r.p.m. distributed the dose homogeneously (92%-104%) and did not damage the RBCs. CONCLUSIONS: The method used to store the blood bags during irradiation guaranteed that all damage caused to the cells was exclusively due to the action of radiation at the doses applied. It was demonstrated that prolonged storage of Co-60-irradiated RBCs results in loss of membrane phospholipids asymmetry, exposing phosphatidylserine (PS) on the cells` surface with a time and dose dependence, which can reduce the in vivo recovery of these cells. A time- and dose-dependence effect on the extracellular K+ and plasma-free Hb levels was also observed. The magnitude of all these effects, however, seems not to be clinically important and can support the storage of irradiated RBC units for at last 28 days.
Resumo:
Aim: To evaluate the effect of inhibiting inducible nitric oxide synthase (iNOS), by aminoguanidine, or leukocyte infiltration, by fucoidin, on gastropathy induced by two different doses of indomethacin in rats. Methods: Rats were treated with saline, aminoguanidine (50 or 100 mg.kg(-1), i. p.) or fucoidin (25 mg.kg(-1), i. v.). Indomethacin was then given at a dose of 5 or 20 mg.kg(-1). At the end of 3 h, macroscopic gastric damage and myeloperoxidase (MPO) activity were assessed. Results: Aminoguanidine reduced the gastric damage induced by indomethacin at 20 mg.kg(-1), but increased gastric MPO activity. However, aminoguanidine did not influence the gastric damage induced by indomethacin at 5 mg.kg(-1). Fucoidin prevented both the gastric damage and the increase in gastric MPO activity induced by indomethacin at 20 mg. kg(-1), but not at 5 mg.kg(-1). Conclusion: Indomethacin at a dose of 20 mg.kg(-1), but not at 5 mg.kg(-1), induced gastropathy dependent on neutrophil infiltration and iNOS-generated NO.
Resumo:
Rationale Sepsis is a leading cause of death in the intensive care unit, characterized by a systemic inflammatory response (SIRS) and bacterial infection, which can often induce multiorgan damage and failure. Leukocyte recruitment, required to limit bacterial spread, depends on phosphoinositide-3 kinase gamma (PI3K gamma) signaling in vitro; however, the role of this enzyme in polymicrobial sepsis has remained unclear. Objectives: This study aimed to determine the specific role of the kinase activity of PI3K gamma in the pathogenesis of sepsis and multiorgan damage. Methods. PI3K gamma wild-type, knockout, and kinase-dead mice were exposed to cecal ligation and perforation induced sepsis and assessed for survival; pulmonary, hepatic, and cardiovascular damage; coagulation derangements; systemic inflammation; bacterial spread; and neutrophil recruitment. Additionally, wild-type mice were treated either before or after the onset of sepsis with a PI3K gamma inhibitor and assessed for survival, neutrophil recruitment, and bacterial spread. Measurements and Main Results: Both genetic and pharmaceutical PI3K gamma kinase inhibition significantly improved survival, reduced multiorgan damage, and limited bacterial decompartmentalization, while modestly affecting SIRS. Protection resulted from both neutrophil-independent mechanisms, involving improved cardiovascular function, and neutrophil-dependent mechanisms, through reduced susceptibility to neutrophil migration failure during severe sepsis by maintaining neutrophil surface expression of the chemokine receptor, CXCR2. Furthermore, PI3K gamma pharmacological inhibition significantly decreased mortality and improved neutrophil migration and bacterial control, even when administered during established septic shock. Conclusions: This study establishes PI3K gamma as a key molecule in the pathogenesis of septic infection and the transition from SIRS to organ damage and identifies it as a novel possible therapeutic target.
Resumo:
Our objective was to evaluate the role of heme-oxygenase 1 (HO-1)/biliverdin/CO pathway in gastric defense against ethanol-induced gastric damage in mice. Mice were pre-treated with saline, hemin (HO-1 inducer), biliverdin (HO-1 product), dimanganese decacarbonyl (DMDC, CO donor) or zinc protoporphyrin IX (ZnPP IX, HO-1 antagonist). Another group received soluble guanylate cyclase (sGC) inhibitor (ODQ) 30 min before hemin, biliverdin or DMDC. After 30 min, gastric damage was induced by ethanol. After one hour, rats were sacrificed. Gastric lesions were measured using a computer planimetry program, and gastric corpus pieces were assayed for malonylaldehyde (MDA), glutathione (GSH) or bilirubin. HO-1 expression was determined after saline or ethanol administration by polymerase chain reaction (PCR) or immunohistochemistry. Ethanol (25% or 50%) induced gastric damage, increased MDA levels and reduced GSH in the gastric tissue. Ethanol 50% increased HO-1 mRNA transcripts, HO-1 immunoreactivity, and bilirubin concentration in gastric mucosa. Pre-treatment with hemin reduced gastric damage and MDA formation and increased GSH concentration in the gastric mucosa. ZnPP IX amplified the ethanol-induced gastric lesion, increased MDA formation and decreased GSH concentration in gastric mucosa. Biliverdin and DMDC reduced gastric damage and MDA formation and increased GSH concentration in the gastric tissue. ODQ completely abolished the DMDC protective gastric effect However, effects of hemin or biliverdin did not change with ODQ treatment. Our results suggest that HO-1/biliverdin/CO pathway plays a protective role against ethanol-induced gastric damage through mechanisms that can be dependent (CO) or independent (biliverdin) of sGC activation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
To investigate the role of non-protein sulfhydryl groups (NP-SH) and leukocyte adhesion in the protective effect of lipopolysaccharide (LPS) from Escherichia coli against indomethacin-induced gastropathy. Male Wistar rats were divided into four groups: saline, LPS, saline + indomethacin and LPS + indomethacin, with six rats in each group. Rats were pretreated with LPS (300 mu g/kg, by intravenous) or saline. After 6 h, indomethacin was administered (20 mg/kg, by gavage). Three hours after treatments, rats were killed. Macroscopic gastric damage, gastric NP-SH concentration, myeloperoxidase (MPO) activity and mesenteric leukocyte adhesion (intravital microscopy) were assessed. Statistical analysis was performed using one-way analysis of variance followed by the Newman-Keuls test. Statistical significance was set at P < 0.05. LPS reduced the gastric damage, gastric MPO activity and increased gastric NP-SH concentration in indomethacin-induced gastropathy. LPS alone increased gastric NP-SH when compared to saline. Indomethacin increased leukocyte adhesion when compared to the saline, and LPS reduced indomethacin-induced leukocyte adhesion. In addition, LPS alone did not change leukocyte adhesion, when compared to the saline. LPS protective effect against indomethacin-induced gastropathy is mediated by an increase in the NP-SH and a decrease in leukocyte-endothelial adhesion.