978 resultados para Damage analysis
Resumo:
The characteristics of carbon fiber-reinforced plastics allow a very broad range of uses. Drilling is often necessary to assemble different components, but this can lead to various forms of damage, such as delamination which is the most severe. However, a reduced thrust force can decrease the risk of delamination. In this work, two variables of the drilling process were compared: tool material and geometry, as well as the effect of feed rate and cutting speed. The parameters that were analyzed include: thrust force, delamination extension and mechanical strength through open-hole tensile test, bearing test, and flexural test on drilled plates. The present work shows that a proper combination of all the factors involved in drilling operations, like tool material, tool geometry and cutting parameters, such as feed rate or cutting speed, can lead to the reduction of delamination damage and, consequently, to the enhancement of the mechanical properties of laminated parts in complex structures, evaluated by open-hole, bearing, or flexural tests.
Resumo:
Drilling of carbon fibre/epoxy laminates is usually carried out using standard drills. However, it is necessary to adapt the processes and/or tooling as the risk of delamination, or other damages, is high. These problems can affect mechanical properties of produced parts, therefore, lower reliability. In this paper, four different drills – three commercial and a special step (prototype) – are compared in terms of thrust force during drilling and delamination. In order to evaluate damage, enhanced radiography is applied. The resulting images were then computational processed using a previously developed image processing and analysis platform. Results show that the prototype drill had encouraging results in terms of maximum thrust force and delamination reduction. Furthermore, it is possible to state that a correct choice of drill geometry, particularly the use of a pilot hole, a conservative cutting speed – 53 m/min – and a low feed rate – 0.025 mm/rev – can help to prevent delamination.
Resumo:
The objective of this work was to study the influence of the boundary conditions on low-velocity impact behaviour of carbon-epoxy composite plates. Experimental work and numerical analysis were performed on [04,904]s laminates. The influence of different boundary conditions on the impacted plates was analysed considering rectangular and square plates. The X-radiography was used as a non-destructive technique to evaluate the internal damage caused by impact loading. A three-dimensional numerical analysis was also performed considering progressive damage modelling. The model includes three-dimensional solid elements and interface finite elements including a cohesive mixed-mode damage model, which allows simulating delamination between different oriented layers. It was verified that plate’s boundary conditions have influence on the delaminated area. Good agreement between experimental and numerical analysis for shape, orientation and size of the delamination was obtained.
Resumo:
The characteristics of carbon fibre reinforced laminates have widened their use from aerospace to domestic appliances, and new possibilities for their usage emerge almost daily. In many of the possible applications, the laminates need to be drilled for assembly purposes. It is known that a drilling process that reduces the drill thrust force can decrease the risk of delamination. In this work, damage assessment methods based on data extracted from radiographic images are compared and correlated with mechanical test results—bearing test and delamination onset test—and analytical models. The results demonstrate the importance of an adequate selection of drilling tools and machining parameters to extend the life cycle of these laminates as a consequence of enhanced reliability.
Resumo:
Adhesively bonded repairs offer an attractive option for repair of aluminium structures, compared to more traditional methods such as fastening or welding. The single-strap (SS) and double-strap (DS) repairs are very straightforward to execute but stresses in the adhesive layer peak at the overlap ends. The DS repair requires both sides of the damaged structures to be reachable for repair, which is often not possible. In strap repairs, with the patches bonded at the outer surfaces, some limitations emerge such as the weight, aerodynamics and aesthetics. To minimize these effects, SS and DS repairs with embedded patches were evaluated in this work, such that the patches are flush with the adherends. For this purpose, in this work standard SS and DS repairs, and also with the patches embedded in the adherends, were tested under tension to allow the optimization of some repair variables such as the overlap length (LO) and type of adhesive, thus allowing the maximization of the repair strength. The effect of embedding the patch/patches on the fracture modes and failure loads was compared with finite elements (FE) analysis. The FE analysis was performed in ABAQUS® and cohesive zone modelling was used for the simulation of damage onset and growth in the adhesive layer. The comparison with the test data revealed an accurate prediction for all kinds of joints and provided some principles regarding this technique.
Resumo:
Beam-like structures are the most common components in real engineering, while single side damage is often encountered. In this study, a numerical analysis of single side damage in a free-free beam is analysed with three different finite element models; namely solid, shell and beam models for demonstrating their performance in simulating real structures. Similar to experiment, damage is introduced into one side of the beam, and natural frequencies are extracted from the simulations and compared with experimental and analytical results. Mode shapes are also analysed with modal assurance criterion. The results from simulations reveal a good performance of the three models in extracting natural frequencies, and solid model performs better than shell while shell model performs better than beam model under intact state. For damaged states, the natural frequencies captured from solid model show more sensitivity to damage severity than shell model and shell model performs similar to the beam model in distinguishing damage. The main contribution of this paper is to perform a comparison between three finite element models and experimental data as well as analytical solutions. The finite element results show a relatively well performance.
Resumo:
Assessing the safety of existing timber structures is of paramount importance for taking reliable decisions on repair actions and their extent. The results obtained through semi-probabilistic methods are unrealistic, as the partial safety factors present in codes are calibrated considering the uncertainty present in new structures. In order to overcome these limitations, and also to include the effects of decay in the safety analysis, probabilistic methods, based on Monte-Carlo simulation are applied here to assess the safety of existing timber structures. In particular, the impact of decay on structural safety is analyzed and discussed, using a simple structural model, similar to that used for current semi-probabilistic analysis.
Resumo:
The Keystone XL has a big role for transforming Canadian oil to the USA. The function of the pipeline is decreasing the dependency of the American oil industry on other countries and it will help to limit external debt. The proposed pipeline seeks the most suitable route which cannot damage agricultural and natural water recourses such as the Ogallala Aquifer. Using the Geographic Information System (GIS) techniques, the suggested path in this study got extremely high correct results that will help in the future to use the least cost analysis for similar studies. The route analysis contains different weighted overlay surfaces, each, was influenced by various criteria (slope, geology, population and land use). The resulted least cost path routes for each weighted overlay surface were compared with the original proposed pipeline and each displayed surface was more effective than the proposed Keystone XL pipeline.
Resumo:
The forest has a crucial ecological role and the continuous forest loss can cause colossal effects on the environment. As Armenia is one of the low forest covered countries in the world, this problem is more critical. Continuous forest disturbances mainly caused by illegal logging started from the early 1990s had a huge damage on the forest ecosystem by decreasing the forest productivity and making more areas vulnerable to erosion. Another aspect of the Armenian forest is the lack of continuous monitoring and absence of accurate estimation of the level of cuts in some years. In order to have insight about the forest and the disturbances in the long period of time we used Landsat TM/ETM + images. Google Earth Engine JavaScript API was used, which is an online tool enabling the access and analysis of a great amount of satellite imagery. To overcome the data availability problem caused by the gap in the Landsat series in 1988- 1998, extensive cloud cover in the study area and the missing scan lines, we used pixel based compositing for the temporal window of leaf on vegetation (June-late September). Subsequently, pixel based linear regression analyses were performed. Vegetation indices derived from the 10 biannual composites for the years 1984-2014 were used for trend analysis. In order to derive the disturbances only in forests, forest cover layer was aggregated and the original composites were masked. It has been found, that around 23% of forests were disturbed during the study period.
Resumo:
RESUMO: Enthesitis is the hallmark of spondyloarthritis (SpA), and is observed in all subtypes. Wide information on SpA abnormalities, including synovitis, tendinitis and enthesitis, can be efficiently perceived by Doppler ultrasound. Furthermore, several studies on imaging of enthesis showed that imaging techniques are better than clinical examination to detect enthesis alterations; and vascularized enthesitis detected by Doppler ultrasound appears to be a valuable diagnostic tool to confirm SpA diagnosis. However, data published until now concerning entheseal elementary alterations that characterize SpA enthesitis (enthesis inflammatory activity) or enthesopathy (permanent structural changes) reflect rather the authors’ empiric opinion than a methodological validation process. In this sense it seems crucial to identify elementary entheseal lesions associated with activity or damage, in order to improve monitoring and treatment response in SpA patients. The development of better assessment tools is today a challenge and a need in SpA. The first study of this thesis focused on the analysis of the reliability of inter-lector and inter-ultrasonography equipment of Madrid sonography enthesitis index (MASEI). Fundamental data for the remaining unrolling project validity. In the second and third studies we concerned about two entheseal elemental lesions: erosions and bursa. In literature erosions represent a permanent structural damage, being useful for monitoring joint injury, disease activity and therapeutic response in many rheumatic diseases; and to date, this concept has been mostly applied in rheumatoid arthritis (RA). Unquestionably, erosion is a tissue-related damage and a structural change. However, the hypothesis that we decided to test was if erosions represent a permanent structural change that can only grow and worsen over time, as occurs in RA, or a transitory alteration. A longitudinal study of early SpA patients was undertaken, and the Achilles enthesis was used as a model. Our results strongly suggested that previously detected erosions could disappear during the course of the disease, being consistent with the dynamic behavior of erosion over time. Based on these striking results it seems reasonable to suggest that the new-bone formation process in SpA could be associated with the resolution of cortical entheseal erosion over time. These results could also be in agreement with the apparent failure of anti-tumor necrosis factor (TNF) therapies to control bone proliferation in SpA; and with the relation of TNF-α, Dickkopf-related protein 1 (Dkk-1) and the regulatory molecule of the Wnt signaling pathway in the bone proliferation in SpA. In the same model, we then proceeded to study the enthesis bursa. Interestingly, the Outcome Measures in Rheumatology Clinical Trials (OMERACT) enthesopathy definition does not include bursa as an elementary entheseal lesion. Nonetheless, bursa was included in 46% of the enthesis studies in a recently systematic literature review, being in agreement with the concept of “synovio-entheseal complex” that includes the link between enthesitis and osteitis in SpA. It has been clarified in recent data that there is not only a close functional integration of the enthesis with the neighboring bone, but also a connection between enthesitis and synovitis. Therefore, we tried to assess the prevalence and relevance of the bursa-synovial lesion in SpA. Our findings showed a significant increase of Achilles bursa presence and thickness in SpA patients compared to controls (healthy/mechanical controls and RA controls). These results raise awareness to the need to improve the enthesopathy ultrasonographic definition. In the final work of this thesis, we have explored new perspectives, not previously reported, about construct validity of enthesis ultrasound as a possible activity outcome in SpA. We performed a longitudinal Achilles enthesis ultrasound study in patients with early SpA. Achilles ultrasound examinations were performed at baseline, six- and twelve-month time periods and compared with clinical outcome measures collected at basal visit. Our results showed that basal erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) are higher in patients with Doppler signal in enthesis, and even that higher basal ESR, CRP and Ankylosing Spondylitis Disease Activity Score (ASDAS) predicted a higher Doppler signal (an ultrasound alteration accepted as representative of inflammation) six months later. Patients with very high disease activity assessed by ASDAS (>3.5) at baseline had significantly higher Achilles total ultrasound score verified at the same time; and ASDAS <1.3 predicted no Doppler signal at six and twelve months. This seems to represent a connection between classical biomarkers and clinical outcomes associated with SpA activity and Doppler signal, not only at the same time, but also for the following months. Remarkably, patients with inactive disease (ASDAS < 1.3) at baseline had no Doppler signal at six and twelve months. These findings reinforce the potential use of ultrasound related techniques for disease progression assessment and prognosis purposes. Intriguingly, Ankylosing Spondylitis Disease Activity Index (BASDAI) didn’t show significant differences between different cut-offs concerning ultrasound lesions or Doppler signal, while verified with ASDAS. These results seem to indicate that ASDAS reflects better than BASDAI what happens in the enthesis. The work herein discussed clearly shows the potential utility of ultrasound in enthesis assessment in SpA patients, and can be important for the development of ultrasound activity and structural damage scores for diagnosis and monitoring purposes. Therefore, local promotion of this technique constitutes a medical intervention that is worth being tested in SpA patients for diagnosis, monitoring and prognosis purposes.
Resumo:
Nowadays, a significant increase in chronic diseases is observed. Epidemiological studies showed a consistent relationship between the consumption of fruits and vegetables and a reduced risk of certain chronic diseases, namely neurodegenerative disorders. One factor common to these diseases is oxidative stress, which is highly related with proteins, lipids, carbohydrates and nucleic acids damage, leading to cellular dysfunction. Polyphenols, highly abundant in berries and associated products, were described as having antioxidant properties, with beneficial effect in these pathologies. The aims of this study were to evaluate by proteomic analyses the effect of oxidative insult in a neuroblastoma cell line (SK-N-MC) and understand the mechanisms involved in the neuroprotective effects of digested extracts from commercial and wild blackberry (R. vagabundus Samp.). The analysis of the total proteome by two-dimensional electrophoresis revealed that oxidative stress in SK-N-MC cells resulted in altered expression of 12 protein spots from a total of 318. Regarding some redox proteomics alterations, particularly proteins carbonylation and glutathionylation, protein carbonyl alterations during stress suggest that cells produce an early and late response; on the other hand, no glutathionylated polypeptides were detected. Relatively to the incubation of SK-N-MC cells with digested berry extracts, commercial blackberry promotes more changes in protein pattern of these cells than R. vagabundus. From 9 statistically different protein spots of cells incubated with commercial blackberry, only β-tubulin and GRP 78 were until now identified by mass spectrometry. Further studies involving the selection of sub proteomes will be necessary to have a better understanding of the mechanisms underlying the neuroprotective effects of berries.
Resumo:
Composite materials have a complex behavior, which is difficult to predict under different types of loads. In the course of this dissertation a methodology was developed to predict failure and damage propagation of composite material specimens. This methodology uses finite element numerical models created with Ansys and Matlab softwares. The methodology is able to perform an incremental-iterative analysis, which increases, gradually, the load applied to the specimen. Several structural failure phenomena are considered, such as fiber and/or matrix failure, delamination or shear plasticity. Failure criteria based on element stresses were implemented and a procedure to reduce the stiffness of the failed elements was prepared. The material used in this dissertation consist of a spread tow carbon fabric with a 0°/90° arrangement and the main numerical model analyzed is a 26-plies specimen under compression loads. Numerical results were compared with the results of specimens tested experimentally, whose mechanical properties are unknown, knowing only the geometry of the specimen. The material properties of the numerical model were adjusted in the course of this dissertation, in order to find the lowest difference between the numerical and experimental results with an error lower than 5% (it was performed the numerical model identification based on the experimental results).
Resumo:
This work proposes a constitutive model to simulate nonlinear behaviour of cement based materials subjected to different loading paths. The model incorporates a multidirectional fixed smeared crack approach to simulate crack initiation and propagation, whereas the inelastic behaviour of material between cracks is treated by a numerical strategy that combines plasticity and damage theories. For capturing more realistically the shear stress transfer between the crack surfaces, a softening diagram is assumed for modelling the crack shear stress versus crack shear strain. The plastic damage model is based on the yield function, flow rule and evolution law for hardening variable, and includes an explicit isotropic damage law to simulate the stiffness degradation and the softening behaviour of cement based materials in compression. This model was implemented into the FEMIX computer program, and experimental tests at material scale were simulated to appraise the predictive performance of this constitutive model. The applicability of the model for simulating the behaviour of reinforced concrete shear wall panels submitted to biaxial loading conditions, and RC beams failing in shear is investigated.
Resumo:
Timber connections represent the crucial part of a timber structure and a great variability exists in terms of types of connections and mechanisms. Taking as case study the widespread traditional timber frame structures, in particular the Portuguese Pombalino buildings, one of the most common timber connection is the half-lap joint. Connections play a major role in the overall behaviour of a structure, particularly when assessing their seismic response, since damage is concentrated at the connections. For this reason, an experimental campaign was designed and distinct types of tests were carried out on traditional half-lap joints to assess their in-plane response. In particular, pull-out and in-plane cyclic tests were carried out on real scale unreinforced connections. Subsequently, the connections were retrofitted, using strengthening techniques such as self-tapping screws, steel plates and GFRP sheets. The tests chosen were meant to capture the hysteretic behaviour and dissipative capacity of the connections and characterise their response and, therefore, their influence on the seismic response of timber frame walls, particularly concerning their uplifting and rotation capacity, that could lead to rocking in the walls. In this paper, the results of the experimental campaign are presented in terms of hysteretic curves, dissipated energy and equivalent viscous damping ratio. Moreover, recommendations are provided on the most appropriate retrofitting solutions.
Resumo:
BACKGROUND: An autoimmune disease is characterized by tissue damage, caused by self-reactivity of different effector mechanisms of the immune system, namely antibodies and T cells. All autoimmune diseases, to some extent, have implications for fertility and obstetrics. Currently, due to available treatments and specialised care for pregnant women with autoimmune disease, the prognosis for both mother and child has improved significantly. However these pregnancies are always high risk. The purpose of this study is to analyse the fertility/pregnancy process of women with systemic and organ-specific autoimmune diseases and assess pathological and treatment implications. METHODS: The authors performed an analysis of the clinical records and relevant obstetric history of five patients representing five distinct autoimmune pathological scenarios, selected from Autoimmune Disease Consultation at the Hospital of Braga, and reviewed the literature. RESULTS: The five clinical cases are the following: Case 1-28 years old with systemic lupus erythematosus, and clinical remission of the disease, under medication with hydroxychloroquine, prednisolone and acetylsalicylic acid, with incomplete miscarriage at 7 weeks of gestation without signs of thrombosis. Case 2-44 years old with history of two late miscarriages, a single preterm delivery (33 weeks) and multiple thrombotic events over the years, was diagnosed with antiphospholipid syndrome after acute myocardial infarction. Case 3-31 years old with polymyositis, treated with azathioprine for 3 years with complete remission of the disease, took the informed decision to get pregnant after medical consultation and full weaning from azathioprine, and gave birth to a healthy term new-born. Case 4-38 years old pregnant woman developed Behcet's syndrome during the final 15 weeks of gestation and with disease exacerbation after delivery. Case 5-36 years old with autoimmune thyroiditis diagnosed during her first pregnancy, with difficult control over the thyroid function over the years and first trimester miscarriage, suffered a second miscarriage despite clinical stability and antibody regression. CONCLUSIONS: As described in literature, the authors found a strong association between autoimmune disease and obstetric complications, especially with systemic lupus erythematosus, antiphospholipid syndrome and autoimmune thyroiditis.