972 resultados para Damage Identification


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamic properties of a structure are a function of its physical properties, and changes in the physical properties of the structure, including the introduction of structural damage, can cause changes in its dynamic behavior. Structural health monitoring (SHM) and damage detection methods provide a means to assess the structural integrity and safety of a civil structure using measurements of its dynamic properties. In particular, these techniques enable a quick damage assessment following a seismic event. In this thesis, the application of high-frequency seismograms to damage detection in civil structures is investigated.

Two novel methods for SHM are developed and validated using small-scale experimental testing, existing structures in situ, and numerical testing. The first method is developed for pre-Northridge steel-moment-resisting frame buildings that are susceptible to weld fracture at beam-column connections. The method is based on using the response of a structure to a nondestructive force (i.e., a hammer blow) to approximate the response of the structure to a damage event (i.e., weld fracture). The method is applied to a small-scale experimental frame, where the impulse response functions of the frame are generated during an impact hammer test. The method is also applied to a numerical model of a steel frame, in which weld fracture is modeled as the tensile opening of a Mode I crack. Impulse response functions are experimentally obtained for a steel moment-resisting frame building in situ. Results indicate that while acceleration and velocity records generated by a damage event are best approximated by the acceleration and velocity records generated by a colocated hammer blow, the method may not be robust to noise. The method seems to be better suited for damage localization, where information such as arrival times and peak accelerations can also provide indication of the damage location. This is of significance for sparsely-instrumented civil structures.

The second SHM method is designed to extract features from high-frequency acceleration records that may indicate the presence of damage. As short-duration high-frequency signals (i.e., pulses) can be indicative of damage, this method relies on the identification and classification of pulses in the acceleration records. It is recommended that, in practice, the method be combined with a vibration-based method that can be used to estimate the loss of stiffness. Briefly, pulses observed in the acceleration time series when the structure is known to be in an undamaged state are compared with pulses observed when the structure is in a potentially damaged state. By comparing the pulse signatures from these two situations, changes in the high-frequency dynamic behavior of the structure can be identified, and damage signals can be extracted and subjected to further analysis. The method is successfully applied to a small-scale experimental shear beam that is dynamically excited at its base using a shake table and damaged by loosening a screw to create a moving part. Although the damage is aperiodic and nonlinear in nature, the damage signals are accurately identified, and the location of damage is determined using the amplitudes and arrival times of the damage signal. The method is also successfully applied to detect the occurrence of damage in a test bed data set provided by the Los Alamos National Laboratory, in which nonlinear damage is introduced into a small-scale steel frame by installing a bumper mechanism that inhibits the amount of motion between two floors. The method is successfully applied and is robust despite a low sampling rate, though false negatives (undetected damage signals) begin to occur at high levels of damage when the frequency of damage events increases. The method is also applied to acceleration data recorded on a damaged cable-stayed bridge in China, provided by the Center of Structural Monitoring and Control at the Harbin Institute of Technology. Acceleration records recorded after the date of damage show a clear increase in high-frequency short-duration pulses compared to those previously recorded. One undamage pulse and two damage pulses are identified from the data. The occurrence of the detected damage pulses is consistent with a progression of damage and matches the known chronology of damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a method for monitoring the variation in support condition of pipelines using a vibration technique. The method is useful for detecting poor support of buried pipelines and for detecting spanning and depth of cover in sub-sea lines. Variation in the pipe support condition leads to increased likelihood of pipe damage. Under roadways, poorly supported pipe may be damaged by vehicle loading. At sea, spanned sections of pipe are vulnerable to ocean current loading and also to snagging by stray anchors in shallow waters. A vibrating `pig' has been developed and tested on buried pipelines. Certain features of pipe support, such as voids and hard spots, display characteristic responses to vibration, and these are measured by the vibrating pig. Post-processing of the measured vibration data is used to produce a graphical representation of the pipeline support and certain `feature characteristics' are identified. In field tests on a pipeline with deliberately constructed support faults, features detected by the vibrating pig are in good agreement with the known construction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bayesian formulated neural networks are implemented using hybrid Monte Carlo method for probabilistic fault identification in cylindrical shells. Each of the 20 nominally identical cylindrical shells is divided into three substructures. Holes of (12±2) mm in diameter are introduced in each of the substructures and vibration data are measured. Modal properties and the Coordinate Modal Assurance Criterion (COMAC) are utilized to train the two modal-property-neural-networks. These COMAC are calculated by taking the natural-frequency-vector to be an additional mode. Modal energies are calculated by determining the integrals of the real and imaginary components of the frequency response functions over bandwidths of 12% of the natural frequencies. The modal energies and the Coordinate Modal Energy Assurance Criterion (COMEAC) are used to train the two frequency-response-function-neural-networks. The averages of the two sets of trained-networks (COMAC and COMEAC as well as modal properties and modal energies) form two committees of networks. The COMEAC and the COMAC are found to be better identification data than using modal properties and modal energies directly. The committee approach is observed to give lower standard deviations than the individual methods. The main advantage of the Bayesian formulation is that it gives identities of damage and their respective confidence intervals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The capability to automatically identify shapes, objects and materials from the image content through direct and indirect methodologies has enabled the development of several civil engineering related applications that assist in the design, construction and maintenance of construction projects. Examples include surface cracks detection, assessment of fire-damaged mortar, fatigue evaluation of asphalt mixes, aggregate shape measurements, velocimentry, vehicles detection, pore size distribution in geotextiles, damage detection and others. This capability is a product of the technological breakthroughs in the area of Image and Video Processing that has allowed for the development of a large number of digital imaging applications in all industries ranging from the well established medical diagnostic tools (magnetic resonance imaging, spectroscopy and nuclear medical imaging) to image searching mechanisms (image matching, content based image retrieval). Content based image retrieval techniques can also assist in the automated recognition of materials in construction site images and thus enable the development of reliable methods for image classification and retrieval. The amount of original imaging information produced yearly in the construction industry during the last decade has experienced a tremendous growth. Digital cameras and image databases are gradually replacing traditional photography while owners demand complete site photograph logs and engineers store thousands of images for each project to use in a number of construction management tasks. However, construction companies tend to store images without following any standardized indexing protocols, thus making the manual searching and retrieval a tedious and time-consuming effort. Alternatively, material and object identification techniques can be used for the development of automated, content based, construction site image retrieval methodology. These methods can utilize automatic material or object based indexing to remove the user from the time-consuming and tedious manual classification process. In this paper, a novel material identification methodology is presented. This method utilizes content based image retrieval concepts to match known material samples with material clusters within the image content. The results demonstrate the suitability of this methodology for construction site image retrieval purposes and reveal the capability of existing image processing technologies to accurately identify a wealth of materials from construction site images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

White spot syndrome virus (WSSV) is one of the most significant viral pathogens causing high mortality and economic damage in shrimp aquaculture. Although intensive efforts were undertaken to detect and characterize WSSV infection in shrimp during the last decade, we still lack methods either to prevent or cure white spot disease. Most of the studies on neutralizing antibodies from sera have been performed using in vivo assays. For the first time, we report use of an in vitro screening method to obtain a neutralizing scFv antibody against WSSV from a previously constructed anti-WSSV single chain fragment variable region (scFv) antibody phage display library. From clones that were positive for WSSV by ELISA, 1 neutralizing scFv antibody was identified using an in vitro screening method based on shrimp primary lymphoid cell cultures. The availability of a neutralizing antibody against the virus should accelerate identification of infection-related genes and the host cell receptor, and may also enable new approaches to the prevention and cure of white spot disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The neurodegenerative disease Friedreich's ataxia (FRDA) is the most common autosomal-recessively inherited ataxia and is caused by a GAA triplet repeat expansion in the first intron of the frataxin gene. In this disease, transcription of frataxin, a mitochondrial protein involved in iron homeostasis, is impaired, resulting in a significant reduction in mRNA and protein levels. Global gene expression analysis was performed in peripheral blood samples from FRDA patients as compared to controls, which suggested altered expression patterns pertaining to genotoxic stress. We then confirmed the presence of genotoxic DNA damage by using a gene-specific quantitative PCR assay and discovered an increase in both mitochondrial and nuclear DNA damage in the blood of these patients (p<0.0001, respectively). Additionally, frataxin mRNA levels correlated with age of onset of disease and displayed unique sets of gene alterations involved in immune response, oxidative phosphorylation, and protein synthesis. Many of the key pathways observed by transcription profiling were downregulated, and we believe these data suggest that patients with prolonged frataxin deficiency undergo a systemic survival response to chronic genotoxic stress and consequent DNA damage detectable in blood. In conclusion, our results yield insight into the nature and progression of FRDA, as well as possible therapeutic approaches. Furthermore, the identification of potential biomarkers, including the DNA damage found in peripheral blood, may have predictive value in future clinical trials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For structural health monitoring it is impractical to identify a large structure with complete measurement due to limited number of sensors and difficulty in field instrumentation. Furthermore, it is not desirable to identify a large number of unknown parameters in a full system because of numerical difficulty in convergence. A novel substructural strategy was presented for identification of stiffness matrices and damage assessment with incomplete measurement. The substructural approach was employed to identify large systems in a divide-and-conquer manner. In addition, the concept of model condensation was invoked to avoid the need for complete measurement, and the recovery process to obtain the full set of parameters was formulated. The efficiency of the proposed method is demonstrated numerically through multi-storey shear buildings subjected to random force. A fairly large structural system with 50 DOFs was identified with good results, taking into consideration the effects of noisy signals and the limited number of sensors. Two variations of the method were applied, depending on whether the sensor could be repositioned. The proposed strategy was further substantiated experimentally using an eight-storey steel plane frame model subjected to shaker and impulse hammer excitations. Both numerical and experimental results have shown that the proposed substructural strategy gave reasonably accurate identification in terms of locating and quantifying structural damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Studies of the adverse neurobehavioral effects of maternal alcohol consumption on the fetus have been largely confined to the postnatal period, after exposure to alcohol has finished. This study explored the brain function of the fetus, at the time of exposure to alcohol, to examine its effect on information processing and stability of performance. Methods: Five groups of fetuses, defined by maternal alcohol consumption patterns, were examined: control (no alcohol); moderate (5 to 10 units/wk either drunk evenly across the week or as a binge, in 2 to 3 days); heavy (20+ units/wk drunk evenly or as a binge). Fetal habituation performance was examined on 3 occasions, separated by 7 days, beginning at 35 weeks of gestation. The number of trials required to habituate on each test session and the difference in performance across test sessions were recorded. Results: Fetuses exposed to heavy binge drinking required significantly more trials to habituate and exhibited a greater variability in performance across all test sessions than the other groups. Maternal drinking, either heavily but evenly or moderately as a binge, resulted in poorer habituation, and moderate binge drinking resulted in greater variability compared with no, or even, drinking. Conclusions: Decreased information processing, reflected by poorer habituation, and increased variability in performance may reflect the initial manifestations of structural damage caused by alcohol to the brain. These results will lead to a greater understanding of the effects of alcohol on the fetus's brain, enable the antenatal identification of fetal alcohol spectrum disorders, and lead to the early implementation of better management strategies. © 2012 by the Research Society on Alcoholism.


--------------------------------------------------------------------------------

Reaxys Database Information|

Relevância:

30.00% 30.00%

Publicador:

Resumo:

White storks (Ciconia ciconia) fed in contaminated waters resulting from the Aznacollar acid mining-sludge spillage into the R. Guadiamar, which feeds the eastern flank of the Guadalquivir marshes (Doñana), S.W. Spain. The sludge was rich in a range of toxic elements, and in organic pollutants such as the aromatic amines. Storks did not exhibit elevated metals in their blood immediately following the accident, but chick blood collected the year following the accident showed genotoxic damage compared to the controls. In this study lead isotope analysis was used to assess if the storks had ingested sludge-derived contaminants. The sludge lead isotope ratio was distinct from that of the Doñana sediments. The stork blood lead isotope ratios exactly matched that of the sludge. It was concluded that the storks had ingested sludge-derived contaminants. A detailed study of the lead contamination along the R. Guadiamar and the R. Guadalquivir (of which the Guadiamar is a tributary) was also conducted to place the white stork colony lead exposure in the context of the spatial contamination of the storks' habitat.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: There is no method routinely used to predict response to anthracycline and cyclophosphamide–based chemotherapy in the clinic; therefore patients often receive treatment for breast cancer with no benefit. Loss of the Fanconi anemia/BRCA (FA/BRCA) DNA damage response (DDR) pathway occurs in approximately 25% of breast cancer patients through several mechanisms and results in sensitization to DNA-damaging agents. The aim of this study was to develop an assay to detect DDR-deficient tumors associated with loss of the FA/BRCA pathway, for the purpose of treatment selection.

Methods: DNA microarray data from 21 FA patients and 11 control subjects were analyzed to identify genetic processes associated with a deficiency in DDR. Unsupervised hierarchical clustering was then performed using 60 BRCA1/2 mutant and 47 sporadic tumor samples, and a molecular subgroup was identified that was defined by the molecular processes represented within FA patients. A 44-gene microarray-based assay (the DDR deficiency assay) was developed to prospectively identify this subgroup from formalin-fixed, paraffin-embedded samples. All statistical tests were two-sided.

Results: In a publicly available independent cohort of 203 patients, the assay predicted complete pathologic response vs residual disease after neoadjuvant DNA-damaging chemotherapy (5-fluorouracil, anthracycline, and cyclophosphamide) with an odds ratio of 3.96 (95% confidence interval [Cl] =1.67 to 9.41; P = .002). In a new independent cohort of 191 breast cancer patients treated with adjuvant 5-fluorouracil, epirubicin, and cyclophosphamide, a positive assay result predicted 5-year relapse-free survival with a hazard ratio of 0.37 (95% Cl = 0.15 to 0.88; P = .03) compared with the assay negative population.

Conclusions: A formalin-fixed, paraffin-embedded tissue-based assay has been developed and independently validated as a predictor of response and prognosis after anthracycline/cyclophosphamide–based chemotherapy in the neoadjuvant and adjuvant settings. These findings warrant further validation in a prospective clinical study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutations within BRCA1 predispose carriers to a high risk of breast and ovarian cancers. BRCA1 functions to maintain genomic stability through the assembly of multiple protein complexes involved in DNA repair, cell-cycle arrest, and transcriptional regulation. Here, we report the identification of a DNA damage-induced BRCA1 protein complex containing BCLAF1 and other key components of the mRNA-splicing machinery. In response to DNA damage, this complex regulates pre-mRNA splicing of a number of genes involved in DNA damage signaling and repair, thereby promoting the stability of these transcripts/proteins. Further, we show that abrogation of this complex results in sensitivity to DNA damage, defective DNA repair, and genomic instability. Interestingly, mutations in a number of proteins found within this complex have been identified in numerous cancer types. These data suggest that regulation of splicing by the BRCA1-mRNA splicing complex plays an important role in the cellular response to DNA damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Periodic monitoring of structures such as bridges is necessary as their condition can deteriorate due to environmental conditions and ageing, causing the bridge to become unsafe. This monitoring - so called Structural Health Monitoring (SHM) - can give an early warning if a bridge becomes unsafe. This paper investigates an alternative wavelet-based approach for the monitoring of bridge structures which consists of the use of a vehicle fitted with accelerometers on its axles. A simplified vehicle-bridge interaction model is used in theoretical simulations to examine the effectiveness of the approach in detecting damage in the bridge. The accelerations of the vehicle are processed using a continuous wavelet transform, allowing a time-frequency analysis to be performed. This enables the identification of both the existence and location of damage from the vehicle response. Based on this analysis, a damage index is established. A parametric study is carried out to investigate the effect of parameters such as the bridge span length, vehicle speed, vehicle mass, damage level, signal noise level and road surface roughness on the accuracy of results. In addition, a laboratory experiment is carried out to validate the results of the theoretical analysis and assess the ability of the approach to detect changes in the bridge response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The identification of pre-clinical microvascular damage in hypertension by non-invasive techniques has proved frustrating for clinicians. This proof of concept study investigated whether entropy, a novel summary measure for characterizing blood velocity waveforms, is altered in participants with hypertension and may therefore be useful in risk stratification.

Methods: Doppler ultrasound waveforms were obtained from the carotid and retrobulbar circulation in 42 participants with uncomplicated grade 1 hypertension (mean systolic/diastolic blood pressure (BP) 142/92 mmHg), and 26 healthy controls (mean systolic/diastolic BP 116/69 mmHg). Mean wavelet entropy was derived from flow-velocity data and compared with traditional haemodynamic measures of microvascular function, namely the resistive and pulsatility indices.

Results: Entropy, was significantly higher in control participants in the central retinal artery (CRA) (differential mean 0.11 (standard error 0.05 cms(-1)), CI 0.009 to 0.219, p 0.017) and ophthalmic artery (0.12 (0.05), CI 0.004 to 0.215, p 0.04). In comparison, the resistive index (0.12 (0.05), CI 0.005 to 0.226, p 0.029) and pulsatility index (0.96 (0.38), CI 0.19 to 1.72, p 0.015) showed significant differences between groups in the CRA alone. Regression analysis indicated that entropy was significantly influenced by age and systolic blood pressure (r values 0.4-0.6). None of the measures were significantly altered in the larger conduit vessel.

Conclusion: This is the first application of entropy to human blood velocity waveform analysis and shows that this new technique has the ability to discriminate health from early hypertensive disease, thereby promoting the early identification of cardiovascular disease in a young hypertensive population.