967 resultados para DYNAMICAL REALIZATIONS
Resumo:
On the basis of previous works, the strange attractor in real physical systems is discussed. Louwerier attractor is used as an example to illustrate the geometric structure and dynamical properties of strange attractor. Then the strange attractor of a kind of two-dimensional map is analysed. Based on some conditions, it is proved that the closure of the unstable manifolds of hyberbolic fixed point of map is a strange attractor in real physical systems.
Resumo:
The statistical correlation between an eruptive prominence and the coronal transient associated with this prominence implies that there should be a relationship between these two kinds of dynamical processes. This paper analyzes the dynamical effect of a plasma
Resumo:
piston
Resumo:
En la presente tesis se ha realizado el estudio de primeros principios (esto es, sinhacer uso de parámetros ajustables) de la estructura electrónica y la dinámica deexcitaciones electrónicas en plomo, tanto en volumen como en superficie y en formade películas de espesor nanométrico. Al presentar el plomo un número atómico alto(82), deben tenerse en cuenta los efectos relativistas. Con este fin, el doctorando haimplementado el acoplo espín-órbita en los códigos computacionales que hanrepresentado la principal herramienta de trabajo.En volumen, se han encontrado fuertes efectos relativistas asi como de lalocalización de los electrones, tanto en la respuesta dieléctrica (excitacioneselectrónicas colectivas) como en el tiempo de vida de electrones excitados. Lacomparación de nuestros resultados con medidas experimentales ha ayudado aprofundizar en dichos efectos.En el estudio de las películas a escala nanométrica se han hallado fuertes efectoscuánticos debido al confinamiento de los estados electrónicos. Dichos efectos semanifiestan tanto en el estado fundamental (en acuerdo con estudiosexperimentales), como en la respuesta dieléctrica a través de la aparición y dinámicade plasmones de diversas características. Los efectos relativistas, a pesar de no serimportantes en la estructura electrónica de las películas, son los responsables de ladesaparación del plasmón de baja energía en nuestros resultados.
Resumo:
[EN]This work analyzes the problem of community structure in real-world networks based on the synchronization of nonidentical coupled chaotic Rössler oscillators each one characterized by a defined natural frequency, and coupled according to a predefined network topology. The interaction scheme contemplates an uniformly increasing coupling force to simulate a society in which the association between the agents grows in time. To enhance the stability of the correlated states that could emerge from the synchronization process, we propose a parameterless mechanism that adapts the characteristic frequencies of coupled oscillators according to a dynamic connectivity matrix deduced from correlated data. We show that the characteristic frequency vector that results from the adaptation mechanism reveals the underlying community structure present in the network.
Resumo:
The problem of "exit against a flow" for dynamical systems subject to small Gaussian white noise excitation is studied. Here the word "flow" refers to the behavior in phase space of the unperturbed system's state variables. "Exit against a flow" occurs if a perturbation causes the phase point to leave a phase space region within which it would normally be confined. In particular, there are two components of the problem of exit against a flow:
i) the mean exit time
ii) the phase-space distribution of exit locations.
When the noise perturbing the dynamical systems is small, the solution of each component of the problem of exit against a flow is, in general, the solution of a singularly perturbed, degenerate elliptic-parabolic boundary value problem.
Singular perturbation techniques are used to express the asymptotic solution in terms of an unknown parameter. The unknown parameter is determined using the solution of the adjoint boundary value problem.
The problem of exit against a flow for several dynamical systems of physical interest is considered, and the mean exit times and distributions of exit positions are calculated. The systems are then simulated numerically, using Monte Carlo techniques, in order to determine the validity of the asymptotic solutions.