221 resultados para DOPANTS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

One-dimensional CaMoo(4):Ln(3+) (Ln = Eu, Tb, Dy) nanofibers have been prepared by a combination method of sol-gel and electrospinning process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), and low voltage cathodoluminescence (CL) as well as kinetic decays were used to characterize the resulting samples. SEM and TEM analyses indicate that the obtained precursor fibers have a uniform size, and the as-formed CaMoO4:Ln(3+) nanofibers consist of nanoparticles. Under ultraviolet excitation, the CaMoO4 samples exhibit a blue-green emission band with a maximum at 500 nm originating from the MoO42- groups. Due to an efficient energy transfer from molybdate groups to dopants, CaMoO4:Ln(3+) phosphors show their strong characteristic emission under ultraviolet excitation and low-voltage electron beam excitation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By incorporating two phosphorescent dyes, namely, iridium(III)[bis(4,6-difluorophenyl)-pyridinato-N,C-2']picolinate (Flrpic) for blue emission and bis(2-(9,9-diethyl-9H-fluoren-2-yl)-1-phenyl-1 H-benzoimidazol-N,C-3) iridium(acetylacetonate) ((fbi)(2)Ir(acac)) for orange emission, into a single-energy well-like emissive layer, an extremely high-efficiency white organic light-emitting diode (WOLED) with excellent color stability is demonstrated. This device can achieve a peak forward-viewing power efficiency of 42.5 lm W-1, corresponding to an external quantum efficiency (EQE) of 19.3% and a current efficiency of 52.8 cd A(-1). Systematic studies of the dopants, host and dopant-doped host films in terms of photophysical properties (including absorption, photoluminescence, and excitation spectra), transient photoluminescence, current density-voltage characteristics, and temperature-dependent electroluminescence spectra are subsequently performed, from which it is concluded that the emission natures of Flrpic and (fbi)(2)Ir(acac) are, respectively, host-guest energy transfer and a direct exciton formation process. These two parallel pathways serve to channel the overall excitons to both dopants, greatly reducing unfavorable energy losses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new approach for the synthesis of polyaniline nanofibers under pseudo-high dilute conditions in aqueous system has been developed. High yield nanoscale polyaniline fibers with 18-110 nm in diameter are readily prepared by a high aniline concentration 0.4 M oxidation polymerization using ammonium persulfate (APS) as an oxidant in the presence of hydrochloric acid (HCl), perchloric acid (HClO4), (1S)-(+)-10-camphorsulfonic acid (CSA), acidic phosphate PAEG120 (PA120) and sulfuric acid (H2SO4) as the dopants. The novel pathway always produces polyaniline nanofibers of tunable diameters, high conductivity (from 10(0) to 10(1) S/cm) and crystallinity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polycrystalline powder sample of KSr4(BO3)(3) was synthesized by high-temperature solid-state reaction. The influence of different rare earth dopants, i.e. Tb3+, TM3+ and Ce3+, on thermoluminescence (TL) of KSr4(BO3)(3) Phosphor was discussed. The TL, photoluminescence (PL) and some dosimetric properties of Ce3+-activated KSr4(BO3)(3) phosphor were studied. The effect of the concentration of Ce3+ on TL intensity was investigated and the result showed that the optimum Ce3+ concentration was 0.2 mol%. The TL kinetic parameters of KSr4(BO3)(3):0.002 Ce3+ phosphor were calculated by computer glow curve deconvolution (CGCD) method. Characteristic emission peaking at about 407 and 383 nm due to the 4f(0)5d(1) -> F-2((5/2),(7/2)) transitions of Ce3+ ion were observed both in PL and three-dimensional (3D) TL spectra. The dose-response of KSr4(BO3)(3):0.002 Ce3+ to gamma-ray was linear in the range from 1 to 1000 mGy. In addition, the decay of the TL intensity of KSr4(BO3)(3):0.002 Ce3+ was also investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two orange phosphorescent iridium complex monomers, 9-hexyl-9-(iridium (III)bis(2-(4'-fluorophenyl)-4-phenylquinoline-N, C-2')(tetradecanedionate-11,13))-2,7-dibromofluorene (Br-PIr) and 9-hexyl-9-(iridium(III)bis(2-(4'-fluorophenyl)-4-methylquinoline-N, C-2')(tetradecanedionate-11,13))-2,7-dibromofluorene (Br-MIr), were successfully synthesized. The Suzuki polycondensation of 2,7-bis(trimethylene boronate)-9,9-dioctylfluorene with 2,7-dibromo-9,9-dioetylfluorene and Br-Plr or Br-MIr afforded two series of copolymers, PIrPFs and MIrPFs, in good yields, in which the concentrations of the phosphorescent moieties were kept small (0.5-3 mol % feed ratio) to realize incomplete energy transfer. The photoluminescence (PL) of the copolymers showed blue- and orange-emission peaks. A white-light-emitting diode with a configuration of indium tin oxide/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/PIr05PF (0.5 mol % feed ratio of Br-PIr)/Ca/Al exhibited a luminous efficiency of 4.49 cd/A and a power efficiency of 2.35 lm/W at 6.0 V with Commission Internationale de L'Eclairage (CIE) coordinates of (0.46, 0.33). The CIE coordinates were improved to (0.34, 0.33) when copolymer MIr10PF (1.0 mol % feed ratio of Br-MIr) was employed as the white-emissive layer. The strong orange emission in the electroluminescence spectra in comparison with PL for these kinds of polymers was attributed to the additional contribution of charge trapping in the phosphorescent dopants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although polyaniline (PANI) has high conductivity and relatively good environmental and thermal stability and is easily synthesized, the intractability of this intrinsically conducting polymer with a melting procedure prevents extensive applications. This work was designed to process PANI with a melting blend method with current thermoplastic polymers. PANI in an emeraldine base form was plasticized and doped with dodecylbenzene sulfonic acid (DBSA) to prepare a conductive complex (PANI-DBSA). PANI-DBSA, low-density polyethylene (LDPE), and an ethylene/vinyl acetate copolymer (EVA) were blended in a twin-rotor mixer. The blending procedure was monitored, including the changes in the temperature, torque moment, and work. As expected, the conductivity of ternary PANI-DBSA/LDPE/EVA was higher by one order of magnitude than that of binary PANI-DBSA/LDPE, and this was attributed to the PANI-DBSA phase being preferentially located in the EVA phase. An investigation of the morphology of the polymer blends with high-resolution optical microscopy indicated that PANI-DBSA formed a conducting network at a high concentration of PANI-DBSA. The thermal and crystalline properties of the polymer blends were measured with differential scanning calorimetry. The mechanical properties were also measured.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A convenient way to make water-soluble or water-dispersible conducting polyaniline was given by employing protonic acid dopants containing hydrophilic ethyleneoxide oligomer as counter-anion. The conducting polyaniline possessed electrical conductivity in the range of 10(-3) to 10(-2) S/cm, depending on the dopant, and it displayed excellent electrochemical redox reversibility in non-aqueous system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A convenient way to prepare water-soluble or water-dispersible conducting polyaniline was developed by employing protonic acid dopants containing hydrophilic ethyleneoxide oligomer as counter-ion. The conducting polyaniline possesses electrical conductivity in the range of 10(-3) to 10(-2) S/cm depending on the chosen dopant, and it displays an excellent electrochemical redox reversibility in non-aqueous systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dependence of the differential capacitance of polypyrrole doped with several typical dopants on potential is presented, which shows that the differential capacitance varies with the potential, the doped polypyrroles with electroactive ions give the largest capacitance near their formal potentials, which is attributed to the mutual media for electron transfer between polypyrrole and electroactive dopants. The existence of two conducting phases was observed in the complex capacitance plots. The electroactive anions act as an intra-conducting-phase medium for electron transfer, the electroactive cations act as an inter-conducting-phase medium for electron transfer. The mutual media between polypyrrole and redox dopants lead to the increase of the discharging time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) are hollow tubes of sp2-hybridised carbon with diameters of the order of nanometres. Due to their unique physical properties, which include ballistic transport and high mechanical strength, they are of significant interest for technological applications. The electronic properties of CNTs are of particular interest for use as gas sensors, interconnect materials in the semi-conductor industry and as the channel material in CNT based field effect transistors. The primary difficulty associated with the use of CNTs in electronic applications is the inability to control electronic properties at the growth stage; as grown CNTs consist of a mixture of metallic and semi-conducting CNTs. Doping has the potential to solve this problem and is a focus of this thesis. Nitrogen-doped CNTs typically have defective structures; the usual hollow CNT structure is replaced by a series of compartments. Through density functional theory (DFT) calculations and experimental results, we propose an explanation for the defective structures obtained, based on the stronger binding of N to the growth catalyst in comparison to C. In real electronic devices, CNTs need to be contacted to metal, we generate the current-voltage (IV) characteristics of metal-contacted CNTs considering both the effect of dopants and the structure of the interface region on electronic properties. We find that substitutionally doped CNTs produce Ohmic contacts and that scattering at the interface is strongly influenced by structure. In addition, we consider the effect of the common vacancy defects on the electronic properties of large diameter CNTs. Defects increase scattering in the CNT, with the greatest scattering occurring for the largest defect (555777). We validate the independent scattering approximation for small diameter CNTs, which enables mean free paths in large diameter CNTs to be calculated, with a smaller mean free paths found for larger defects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanostructured materials are central to the evolution of future electronics and biomedical applications amongst other applications. This thesis is focused on developing novel methods to prepare a number of nanostructured metal oxide particles and films by a number of different routes. Part of the aim was to see how techniques used in nanoparticle science could be applied to thin film methods to develop functional surfaces. Wet-chemical methods were employed to synthesize and modify the metal oxide nanostructures (CeO2 and SiO2) and their structural properties were characterized through advanced X-ray diffraction, electron microscopy, photoelectron spectroscopy and other techniques. Whilst particulates have uses in many applications, their attachment to surfaces is of importance and this is frequently challenging. We examined the use of block copolymer methods to form very well defined metal oxide particulate-like structures on the surface of a number of substrates. Chapter 2 describes a robust method to synthesize various sized silica nanoparticles. As-synthesized silica nanoparticles were further functionalized with IR-820 and FITC dyes. The ability to create size controlled nanoparticles with associated (optical) functionality may have significant importance in bio-medical imaging. Thesis further describes how non-organic modified fluorescent particles might be prepared using inorganic oxides. A study of the concentrations and distributions of europium dopants within the CeO2 nanoparticles was undertaken and investigated by different microscopic and spectroscopic techniques. The luminescent properties were enhanced by doping and detailed explanations are reported. Additionally, the morphological and structural evolution and optical properties were correlated as a function of concentrations of europium doping as well as with further annealing. Further work using positron annihilation spectroscopy allowed the study of vacancy type defects formed due to europium doping in CeO2 crystallites and this was supported by complimentary UV-Vis spectra and XRD work. During the last few years the interest in mesoporous silica materials has increased due to their typical characteristics such as potential ultra-low dielectric constant materials, large surface area and pore volume, well-ordered and uniform pores with adjustable pores between 2 and 50 nm. A simple, generic and cost-effective route was used to demonstrate the synthesis of 2D mesoporous silica thin films over wafer scale dimensions in chapter 5. Lithographic resist and in situ hard mask block copolymer followed by ICP dry etching were used to fabricate mesoporous silica nanostructures. The width of mesoporous silica channels can be varied by using a variety of commercially available lithographic resists whereas depth of the mesoporous silica channels can be varied by altering the etch time. The crystal structure, morphology, pore arrangement, pore diameters, thickness of films and channels were determined by XRD, SEM, ellipsometry and the results reported. This project also extended work towards the study of the antimicrobial study of nanopatterned silver nanodot arrays formed using the block copolymer approach defined above. Silver nanodot arrays were successfully tested for antimicrobial activity over S. aureus and P. aeruginosa biofilms and results shows silver nanodots has good antimicrobial activity for both S. aureus and P. aeruginosa biofilms. Thus, these silver nanodot arrays shows a potential to be used as a substitute for the resolution of infection complications in many areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the aim of improving the performance and extending the range of applications of mesoporous WO₃films, which were initially developed for the photoelectrochemical oxidation of water, we investigated the effect of a number of dopants (lithium, silicon, ruthenium, molybdenum and tin) upon the transparency, crystallinity, porosity and conductivity of the modified films. Tin, molybdenum and silicon were shown to improve the electrochromic behaviour of the layers whereas ruthenium enhanced considerably the electronic conductivity of the WO₃films. Interestingly, most of the dopants also affected the film morphology and the size of WO₃nanocrystals. X-ray photoelectron spectra revealed absence of significant segregation of doping elements within the film. Raman analyses confirmed that the monoclinic structure of WO₃films does not change upon substitutional cation doping; thus, the crystallinity of WO₃films is maintained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic light emitting diode devices employing organometallic Nd(9-hydroxyphenalen-1-one)(3) complexes as near infrared emissive dopants dispersed within poly(N-vinylcarbazole) (PVK) host matrices have been fabricated by spin-casting layers of the doped polymer onto glass/indium tin oxide (ITO)/3,4-polyethylene-dioxythiophene-polystyrene sulfonate (PEDOT) substrates. Room temperature electroluminescence, centered at similar to 1065 nm. was observed from devices top contacted by evaporated aluminum or calcium metal cathodes and was assigned to transitions between the F-4(3/2) -> I-4(11/2) levels of the Nd3+ ions. In particular, a near infrared irradiance of 8.5 nW/mm(2) and an external quantum efficiency of 0.007% was achieved using glass/ITO/PEDOT/PVK:Nd(9-hydroxyphenalen-1-one)(3)/Ca/Al devices. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Germanium NPN bipolar transistors have been manufactured using phosphorus and boron ion implantation processes. Implantation and subsequent activation processes have been investigated for both dopants. Full activation of phosphorus implants has been achieved with RTA schedules at 535?C without significant junction diffusion. However, boron implant activation was limited and diffusion from a polysilicon source was not practical for base contact formation. Transistors with good output characteristics were achieved with an Early voltage of 55V and common emitter current gain of 30. Both Silvaco process and device simulation tools have been successfully adapted to model the Ge BJT(bipolar junction transistor) performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gas-to-liquid processes are generally used to convert natural gas or other gaseous hydrocarbons into liquid fuels via an intermediate syngas stream. This includes the production of liquid fuels from biomass-derived sources such as biogas. For example, the dry reforming of methane is done by reacting CH4 and CO2, the two main components of natural biogas, into more valuable products, i.e., CO and H2. Nickel containing perovskite type catalysts can promote this reaction, yielding good conversions and selectivities; however, they are prone to coke laydown under certain operating conditions. We investigated the addition of high oxygen mobility dopants such as CeO2, ZrO2, or YSZ to reduce carbon laydown, particularly using reaction conditions that normally result in rapid coking. While doping with YSZ, YDC, GDC, and SDC did not result in any improvement, we show that a Ni perovskite catalyst (Na0.5La0.5Ni0.3Al0.7O2.5) doped with 80.9 ZrO2 15.2 CeO2 gave the lowest amount of carbon formation at 800 °C and activity was maintained over the operating time.