955 resultados para DISC STARS
Resumo:
uvby H-beta photometry has been obtained for a sample of 93 selected main sequence A stars. The purpose was to determine accurate effective temperatures, surface gravities, and absolute magnitudes for an individual determination of ages and parallaxes, which have to be included in a more extensive work analyzing the kinematic properties of A V stars. Several calibrations and methods to determine the above mentioned parameters have been reviewed, allowing the design of a new algorithm for their determination. The results obtained using this procedure were tested in a previous paper using uvby H-beta data from the Hauck and Mermilliod catalogue, and comparing the rusulting temperatures, surface gravities and absolute magnitudes with empirical determinations of these parameters.
Resumo:
Vertebroplasty and kyphoplasty have been reported to alter the mechanical behavior of the treated and adjacent-level segments, and have been suggested to increase the risk for adjacent-level fractures. The intervertebral disc (IVD) plays an important role in the mechanical behavior of vertebral motion segments. Comparisons between normal and degenerative IVD motion segments following cement augmentation have yet to be reported. A microstructural finite element model of a degenerative IVD motion segment was constructed from micro-CT images. Microdamage within the vertebral body trabecular structure was used to simulate a slightly (I = 83.5% of intact stiffness), moderately (II = 57.8% of intact stiffness), and severely (III = 16.0% of intact stiffness) damaged motion segment. Six variable geometry single-segment cement repair strategies (models A-F) were studied at each damage level (I-III). IVD and bone stresses, and motion segment stiffness, were compared with the intact and baseline damage models (untreated), as well as, previous findings using normal IVD models with the same repair strategies. Overall, small differences were observed in motion segment stiffness and average stresses between the degenerative and normal disc repair models. We did however observe a reduction in endplate bulge and a redistribution in the microstructural tissue level stresses across both endplates and in the treated segment following early stage IVD degeneration. The cement augmentation strategy placing bone cement along the periphery of the vertebra (model E) proved to be the most advantageous in treating the degenerative IVD models by showing larger reductions in the average bone stresses (vertebral and endplate) as compared to the normal IVD models. Furthermore, only this repair strategy, and the complete cement fill strategy (model F), were able to restore the slightly damaged (I) motion segment stiffness above pre-damaged (intact) levels. Early stage IVD degeneration does not have an appreciable effect in motion segment stiffness and average stresses in the treated and adjacent-level segments following vertebroplasty and kyphoplasty. Placing bone cement in the periphery of the damaged vertebra in a degenerative IVD motion segment, minimizes load transfer, and may reduce the likelihood of adjacent-level fractures.
Resumo:
The wing of the fruit fly, Drosophila melanogaster, with its simple, two-dimensional structure, is a model organ well suited for a systems biology approach. The wing arises from an epithelial sac referred to as the wing imaginal disc, which undergoes a phase of massive growth and concomitant patterning during larval stages. The Decapentaplegic (Dpp) morphogen plays a central role in wing formation with its ability to co-coordinately regulate patterning and growth. Here, we asked whether the Dpp signaling activity scales, i.e. expands proportionally, with the growing wing imaginal disc. Using new methods for spatial and temporal quantification of Dpp activity and its scaling properties, we found that the Dpp response scales with the size of the growing tissue. Notably, scaling is not perfect at all positions in the field and the scaling of target gene domains is ensured specifically where they define vein positions. We also found that the target gene domains are not defined at constant concentration thresholds of the downstream Dpp activity gradients P-Mad and Brinker. Most interestingly, Pentagone, an important secreted feedback regulator of the pathway, plays a central role in scaling and acts as an expander of the Dpp gradient during disc growth.
Resumo:
We determine the structure of neutron stars within a Brueckner-Hartree-Fock approach based on realistic nucleon-nucleon, nucleon-hyperon, and hyperon-hyperon interactions. Our results indicate rather low maximum masses below 1.4 solar masses. This feature is insensitive to the nucleonic part of the EOS due to a strong compensation mechanism caused by the appearance of hyperons and represents thus strong evidence for the presence of nonbaryonic "quark" matter in the interior of heavy stars.
Resumo:
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family that induces cancer cell death by apoptosis with some selectivity. TRAIL-induced apoptosis is mediated by the transmembrane receptors death receptor 4 (DR4) (also known as TRAIL-R1) and DR5 (TRAIL-R2). TRAIL can also bind decoy receptor 1 (DcR1) (TRAIL-R3) and DcR2 (TRAIL-R4) that fail to induce apoptosis since they lack and have a truncated cytoplasmic death domain, respectively. In addition, DcR1 and DcR2 inhibit DR4- and DR5-mediated, TRAIL-induced apoptosis and we demonstrate here that this occurs through distinct mechanisms. While DcR1 prevents the assembly of the death-inducing signaling complex (DISC) by titrating TRAIL within lipid rafts, DcR2 is corecruited with DR5 within the DISC, where it inhibits initiator caspase activation. In addition, DcR2 prevents DR4 recruitment within the DR5 DISC. The specificity of DcR1- and DcR2-mediated TRAIL inhibition reveals an additional level of complexity for the regulation of TRAIL signaling.
Resumo:
Two cases of a benign form of optic disc edema after successful trabeculectomy are reported. In both patients, optic disc edema was noted 2 to 4 weeks after trabeculectomy. The edema occurred without loss of visual acuity or field. The absolute intraocular pressure and intracranial pressure were normal--that is, the edema was not a syndrome of hypotony or pseudotumor cerebri. However, both patients had intracranial pressure in the high-normal range. The decrease in intraocular pressure into the low normal range after trabeculectomy may have altered the intracranial pressure:intraocular pressure ratio at the lamina cribrosa enough to produce optic disc edema.
Resumo:
Total disc replacement (TDR) clinical success has been reported to be related to the residual motion of the operated level. Thus, accurate measurement of TDR range of motion (ROM) is of utmost importance. One commonly used tool in measuring ROM is the Oxford Cobbometer. Little is known however on its accuracy (precision and bias) in measuring TDR angles. The aim of this study was to assess the ability of the Cobbometer to accurately measure radiographic TDR angles. An anatomically accurate synthetic L4-L5 motion segment was instrumented with a CHARITE artificial disc. The TDR angle and anatomical position between L4 and L5 was fixed to prohibit motion while the motion segment was radiographically imaged in various degrees of rotation and elevation, representing a sample of possible patient placement positions. An experienced observer made ten readings of the TDR angle using the Cobbometer at each different position. The Cobbometer readings were analyzed to determine measurement accuracy at each position. Furthermore, analysis of variance was used to study rotation and elevation of the motion segment as treatment factors. Cobbometer TDR angle measurements were most accurate (highest precision and lowest bias) at the centered position (95.5%), which placed the TDR directly inline with the x-ray beam source without any rotation. In contrast, the lowest accuracy (75.2%) was observed in the most rotated and off-centered view. A difference as high as 4 degrees between readings at any individual position, and as high as 6 degrees between all the positions was observed. Furthermore, the Cobbometer was unable to detect the expected trend in TDR angle projection with changing position. Although the Cobbometer has been reported to be reliable in different clinical applications, it lacks the needed accuracy to measure TDR angles and ROM. More accurate ROM measurement methods need to be developed to help surgeons and researchers assess radiological success of TDRs.
Resumo:
Chronic low back pain attributed to lumbar disc degeneration poses a serious challenge to physicians. Surgery may be indicated in selected cases following failure of appropriate conservative treatment. For decades, the only surgical option has been spinal fusion, but its results have been inconsistent. Some prospective trials show superiority over usual conservative measures while others fail to demonstrate its advantages. In an effort to improve results of fusion and to decrease the incidence of adjacent segment degeneration, total disc replacement techniques have been introduced and studied extensively. Short-term results have shown superiority over some fusion techniques. Mid-term results however tend to show that this approach yields results equivalent to those of spinal fusion. Nucleus replacement has gained some popularity initially, but evidence on its efficacy is scarce. Dynamic stabilisation, a technique involving less rigid implants than in spinal fusion and performed without the need for bone grafting, represents another surgical option. Evidence again is lacking on its superiority over other surgical strategies and conservative measures. Insertion of interspinous devices posteriorly, aiming at redistributing loads and relieving pain, has been used as an adjunct to disc removal surgery for disc herniation. To date however, there is no clear evidence on their efficacy. Minimally invasive intradiscal thermocoagulation techniques have also been tried, but evidence of their effectiveness is questioned. Surgery using novel biological solutions may be the future of discogenic pain treatment. Collaboration between clinicians and basic scientists in this multidisciplinary field will undoubtedly shape the future of treating symptomatic disc degeneration.
Resumo:
Within a developing organism, cells require information on where they are in order to differentiate into the correct cell-type. Pattern formation is the process by which cells acquire and process positional cues and thus determine their fate. This can be achieved by the production and release of a diffusible signaling molecule, called a morphogen, which forms a concentration gradient: exposure to different morphogen levels leads to the activation of specific signaling pathways. Thus, in response to the morphogen gradient, cells start to express different sets of genes, forming domains characterized by a unique combination of differentially expressed genes. As a result, a pattern of cell fates and specification emerges.Though morphogens have been known for decades, it is not yet clear how these gradients form and are interpreted in order to yield highly robust patterns of gene expression. During my PhD thesis, I investigated the properties of Bicoid (Bcd) and Decapentaplegic (Dpp), two morphogens involved in the patterning of the anterior-posterior axis of Drosophila embryo and wing primordium, respectively. In particular, I have been interested in understanding how the pattern proportions are maintained across embryos of different sizes or within a growing tissue. This property is commonly referred to as scaling and is essential for yielding functional organs or organisms. In order to tackle these questions, I analysed fluorescence images showing the pattern of gene expression domains in the early embryo and wing imaginal disc. After characterizing the extent of these domains in a quantitative and systematic manner, I introduced and applied a new scaling measure in order to assess how well proportions are maintained. I found that scaling emerged as a universal property both in early embryos (at least far away from the Bcd source) and in wing imaginal discs (across different developmental stages). Since we were also interested in understanding the mechanisms underlying scaling and how it is transmitted from the morphogen to the target genes down in the signaling cascade, I also quantified scaling in mutant flies where this property could be disrupted. While scaling is largely conserved in embryos with altered bcd dosage, my modeling suggests that Bcd trapping by the nuclei as well as pre-steady state decoding of the morphogen gradient are essential to ensure precise and scaled patterning of the Bcd signaling cascade. In the wing imaginal disc, it appears that as the disc grows, the Dpp response expands and scales with the tissue size. Interestingly, scaling is not perfect at all positions in the field. The scaling of the target gene domains is best where they have a function; Spalt, for example, scales best at the position in the anterior compartment where it helps to form one of the anterior veins of the wing. Analysis of mutants for pentagone, a transcriptional target of Dpp that encodes a secreted feedback regulator of the pathway, indicates that Pentagone plays a key role in scaling the Dpp gradient activity.
Resumo:
Työssä tutkittiin kiekkosuodattimeen liittyviä ulkoisia simulointimalleja integroidussa simulointiympäristössä. Työn tarkoituksena oli parantaa olemassa olevaa mekanistista kiekkosuodatinmallia. Malli laadittiin dynaamiseen paperiteollisuuden tarpeisiin tehtyyn simulaattoriin (APMS), jossa olevaan alkuperäiseen mekanistiseen malliin tehtiin ulkoinen lisämalli, joka käyttää hyväkseen kiekkosuodatinvalmistajan mittaustuloksia. Laitetiedon saatavuutta suodattimien käyttäjille parannettiin luomalla Internetissä sijaitsevalle palvelimelle kiekkosuodattimen laitetietomäärittelyt. Suodatinvalmistaja voi palvella asiakkaitaan viemällä laitetiedot palvelimelle ja yhdistämällä laitetiedon simulointimalliin. Tämä on mahdollista Internetin ylitse käytettävän integroidun simulointiympäristön avulla, jonka on tarkoitus kokonaisvaltaisesti yhdistää simulointi ja prosessisuunnittelu. Suunnittelijalle tarjotaan työkalut, joilla dynaaminen simulointi, tasesimulointi ja kaavioiden piirtäminen onnistuu prosessilaitetiedon ollessa saatavilla. Nämä työkalut on tarkoitus toteuttaa projektissa nimeltä Galleria, jossa luodaan prosessimalli- ja laitetietopalvelin Internetiin. Gallerian käyttöliittymän avulla prosessisuunnittelija voi käyttää erilaisia simulointiohjelmistoja ja niihin luotuja valmiita malleja, sekä saada käsiinsä ajan tasalla olevaa laitetietoa. Ulkoinen kiekkosuodatinmalli laskee suodosvirtaamat ja suodosten pitoisuudet likaiselle, kirkkaalle ja superkirkkaalle suodokselle. Mallin syöttöparametrit ovat kiekkojen pyörimisnopeus, sisään tulevan syötön pitoisuus, suotautuvuus (freeness) ja säätöparametri, jolla säädetään likaisen ja kirkkaan suodoksen keskinäinen suhde. Suotautuvuus kertoo mistä massasta on kyse. Mitä suurempi suotautuvuus on, sitä paremmin massa suodattuu ja sitä puhtaampia suodokset yleensä ovat. Mallin parametrit viritettiin regressioanalyysillä ja valmistajan palautetta apuna käyttäen. Käyttäjä voi valita haluaako hän käyttää ulkoista vai alkuperäistä mallia. Alkuperäinen malli täytyy ensin alustaa antamalla sille nominaaliset toimintapisteet virtaamille ja pitoisuuksille tietyllä pyörimisnopeudella. Ulkoisen mallin yhtälöitä voi käyttää alkuperäisen mallin alustamiseen, jos alkuperäinen malli toimii ulkoista paremmin. Ulkoista mallia voi käyttää myös ilman simulointiohjelmaa Galleria-palvelimelta käsin. Käyttäjälle avautuu näin mahdollisuus tarkastella kiekkosuodattimien parametreja ja nähdä suotautumistulokset oman työasemansa ääreltä mistä tahansa, kunhan Internetyhteys on olemassa. Työn tuloksena kiekkosuodattimien laitetiedon saatavuus käyttäjille parani ja alkuperäisen simulointimallin rajoituksia ja puutteita vähennettiin.
Resumo:
The scolex of the bothriocephalidean cestode Clestobothrium crassiceps was studied by means of scanning electron microscopy (SEM). The comparative results of various fixation procedures and techniques are presented. The scolex of C. crassiceps is oval to globular and exhibits two deep bothria which appear in the form of two lobes separated by a longitudinal groove. At the apex of the scolex, resembling a beret, an apical disc is present (oval, flattened and with a sinuous edge). Our results are compared with those previously reported in other species of Clestobothrium. This study represents the first report which highlights the presence of an apical disc in the scolex of C. crassiceps. It describes the effects of different procedures applied to our material during preparation and a comparative analysis results obtained using these various methods.
Resumo:
The scolex of the bothriocephalidean cestode Clestobothrium crassiceps was studied by means of scanning electron microscopy (SEM). The comparative results of various fixation procedures and techniques are presented. The scolex of C. crassiceps is oval to globular and exhibits two deep bothria which appear in the form of two lobes separated by a longitudinal groove. At the apex of the scolex, resembling a beret, an apical disc is present (oval, flattened and with a sinuous edge). Our results are compared with those previously reported in other species of Clestobothrium. This study represents the first report which highlights the presence of an apical disc in the scolex of C. crassiceps. It describes the effects of different procedures applied to our material during preparation and a comparative analysis results obtained using these various methods.