518 resultados para DIPHENYL DISELENIDE
Resumo:
"This toxicological profile is prepared in accordance with guidelines developed by the Agency for Toxic Substances and Disease Registry (ATSDR) and the Environmental Protection Agency (EPA). The original guidelines were published in the Federal Register on April 17, 1987"--P. v.
Resumo:
Thesis (doctoral)--Kaiser-Wilhelms-Universitat Strassburg, 1896.
Resumo:
Thesis (doctoral)--
Resumo:
The present study investigated the concentrations and patterns of PBDEs and hydroxylated (OH) PBDE analogues in two ringed seal populations: less contaminated Svalbard and more contaminated Baltic Sea. Mean concentration of hepatic sum-PBDE, which was dominated by BDE47, was six times higher in the ringed seals from the Baltic Sea compared to the seals from Svalbard. BDE47/sum-PBDE was higher in the seals from Svalbard compared to that for Baltic seals, while the trend was opposite for BDE153 and 154. The geographical difference in contaminant pattern of PBDEs in ringed seals could be explained by biotransformation via oxidative metabolism and/or by dietary differences. OH-PBDEs were detectable in the majority of plasma samples from both locations, and dominated by bioaccumulation of naturally occurring congeners. Low levels of 3-OH-BDE47 and 4'-OH-BDE49 in the Baltic ringed seals suggested minor oxidative biotransformation of BDE47. In the Baltic seals, BDE153/sum-PBDEs and BDE154/sum-PBDEs increased and BDE28/sum-PBDE decreased with increasing sum-POP concentration, which suggests BDE153 and 154 are more persistent than BDE28. Contrasting diets of the ringed seals in these two locations may influence the PBDE congener pattern due to selective long-range transport and direct effluent emissions to Svalbard and the Baltic, respectively.
Resumo:
Polyfluoroalkyl chemicals (PFCs) have been used worldwide for more than 50 years in a wide variety of industrial and consumer products. Limited data exist on human exposure to PFCs in the Southern Hemisphere. Human blood serum collected in southeast Queensland, Australia, in 2006−2007 from 2420 donors was pooled according to age (cord blood, 0−0.5, 0.6−1, 1.1−1.5, 1.6−2, 2.1−2.5, 2.6−3, 3.1−3.5, 3.6−4, 4.1−6, 6.1−9, 9.1−12, 12.1−15, 16−30, 31−45, 46−60, and >60 years) and gender and was analyzed for eight PFCs. Across all pools, perfluorooctane sulfonate (PFOS) was detected at the highest mean concentration (15.2 ng/mL) followed by perfluorooctanoate (PFOA, 6.4 ng/mL), perfluorohexane sulfonate (PFHxS, 3.1 ng/mL), perfluorononanoate (PFNA, 0.8 ng/mL), 2-(N-methyl-perfluorooctance sulfonamide) acetate (Me-PFOSA-AcOH, 0.66 ng/mL), and perfluorodecanoate (PFDeA, 0.29 ng/mL). Perfluorooctane sulfonamide was detected in only 24% of the pools, and 2-(N-ethylperfluorooctane sulfonamide) acetate was detected in only one. PFOS concentrations were significantly higher in pools from adult males than from adult females (p = 0.002); no gender differences were apparent in the pools from children (<12 years old). The highest mean concentrations of PFOA, PFHxS, PFNA, PFDeA, and Me-PFOSA-AcOH were found in children <15 years, while PFOS was highest in adults >60 years. Investigation into the sources and exposure pathways in Australia, in particular for children, is necessary as well as continued biomonitoring to determine the potential effects on human concentrations as a result of changes in the PFC manufacturing practices, including the cessation of production of several PFCs.
Resumo:
Brominated flame retardants, including hexabromocyclododecane (HBCD) and polybrominated diphenyl ethers (PBDEs) are used to reduce the flammability of a multitude of electrical and electronic products, textiles and foams. The use of selected PBDEs has ceased, however, use of decaBDE and HBCD continues. While elevated concentrations of PBDEs in humans have been observed in Australia, no data is available on other BFRs such as HBCD. This study aimed to provide background HBCD concentrations from a representative sample of the Australian population and to assess temporal trends of HBCD and compare with PBDE concentrations over a 16 year period. Samples of human milk collected in Australia from 1993 to 2009, primarily from primiparae mothers were combined into 12 pools from 1993 (2 pools); 2001; 2002/2003 (4 pools); 2003/2004; 2006; 2007/2008 (2 pools); and 2009. Concentrations of ∑HBCD ranged from not quantified (nq) to 19 ng g−1 lipid while α-HBCD and γ-HBCD ranged from nq to 10 ng g−1 lipid and nq to 9.2 ng g−1 lipid. β-HBCD was detected in only one sample at 3.6 ng g−1 lipid while ∑4PBDE ranged from 2.5 to 15.8 ng g−1 lipid. No temporal trend was apparent in HBCD concentrations in human milk collected in Australia from 1993 to 2009. In comparison, PBDE concentrations in human milk show a peak around 2002/03 (mean ∑4PBDEs = 9.6 ng g−1 lipid) and 2003/04 (12.4 ng g−1 lipid) followed by a decrease in 2007/08 (2.7 ng g−1 lipid) and 2009 (2.6 ng g−1 lipid). In human blood serum samples collected from the Australian population, PBDE concentrations did not vary greatly (p = 0.441) from 2002/03 to 2008/09. Continued monitoring including both human milk and serum for HBCD and PBDEs is required to observe trends in human body burden of HBCD and PBDEs body burden following changes to usage.
Resumo:
The literature was reviewed to assess the relationship between the lipid adjusted concentration in human serum and breast milk (expressed as the serum/milk ratio) of a broad range of POPs in paired samples. Thirteen studies were identified, including seven studies that reported serum/milk ratios for polychlorinated dibenzo-dioxins and -furans (PCDD/Fs), ten for polychlorinated biphenyls (PCBs), five for polybrominated diphenyl ethers (PBDEs), and five for organochlorine pesticides (OCPs). Mean serum/milk ratios ranged between 0.7 and 25 depending on the compound and congener. For PCDD/Fs, PCBs and PBDEs, a clear trend of increasing mean serum/milk ratio by increasing molar volume, hydrophobicity and number of halogen substitutes was observed. The mean serum/milk ratios reported by the 13 studies summarized here will aid comparison between human POPs exposure studies using either serum or milk samples. More studies are needed to allow a valid comparison between data obtained from analysis of breast milk and serum samples for a broader range of POPs. Furthermore such studies may shed light on compound specific factors as well as other determinants that may affect the partitioning and partition kinetics of POPs between serum and breast milk.