888 resultados para DIMETHYL FORMAMIDE
Resumo:
Reaction of 3-methyl-2-phenylpyrrocoline(I) and dimethyl acetylenedicarboxylate(II) in refluxing toluene furnishes cis-7',8-dihydro.4,5,8,9-tetramethoxycarbonyl-7'-phenyl-7' -methylazocino(2,1,8-cd]pyrrolizine (III) and trans-7',8-dihydro-4,5,8,9-tetramethoxycarbonyl-7-phenyl-7'-methylazocino[2,1,8-cd]pyrrolizine (IV), while the same reaction at ambient temperature yields 1-[(1,2-trans-dimethoxycarbonyl)vinyl]-3-methyl-2-phenylpyrrocoline (V) and 1-[(1,2-cis-di(methoxycarbonyl)vinyl)--methyl-2- phenylpyirocoUne (V) and 1-[(I,2-cis-di(methoxycarbonyl)Yinyl]-3-metbyl-2-phenylpyrrocoline(VI) as the major products. The structure of IV has been determined by X-ray crystallography.A possible mechanism of formation of these products is also discussed.
Resumo:
BACKGROUND Dimethyl sulfoxide (DMSO) is essential for the preservation of liquid nitrogen-frozen stem cells, but is associated with toxicity in the transplant recipient. STUDY DESIGN AND METHODS In this prospective noninterventional study, we describe the use of DMSO in 64 European Blood and Marrow Transplant Group centers undertaking autologous transplantation on patients with myeloma and lymphoma and analyze side effects after return of DMSO-preserved stem cells. RESULTS While the majority of centers continue to use 10% DMSO, a significant proportion either use lower concentrations, mostly 5 or 7.5%, or wash cells before infusion (some for selected patients only). In contrast, the median dose of DMSO given (20 mL) was much less than the upper limit set by the same institutions (70 mL). In an accompanying statistical analysis of side effects noted after return of DMSO-preserved stem cells, we show that patients in the highest quartile receiving DMSO (mL and mL/kg body weight) had significantly more side effects attributed to DMSO, although this effect was not observed if DMSO was calculated as mL/min. Dividing the myeloma and lymphoma patients each into two equal groups by age we were able to confirm this result in all but young myeloma patients in whom an inversion of the odds ratio was seen, possibly related to the higher dose of melphalan received by young myeloma patients. CONCLUSION We suggest better standardization of preservation method with reduced DMSO concentration and attention to the dose of DMSO received by patients could help reduce the toxicity and morbidity of the transplant procedure.
Resumo:
The ubiquitous marine trace gas dimethyl sulfide (DMS) comprises the greatest natural source of sulfur to the atmosphere and is a key player in atmospheric chemistry and climate. We explore the short-term response of DMS production and cycling and that of its algal precursor dimethyl sulfoniopropionate (DMSP) to elevated carbon dioxide (CO2) and ocean acidification (OA) in five 96 h shipboard bioassay experiments. Experiments were performed in June and July 2011, using water collected from contrasting sites in NW European waters (Outer Hebrides, Irish Sea, Bay of Biscay, North Sea). Concentrations of DMS and DMSP, alongside rates of DMSP synthesis and DMS production and consumption, were determined during all experiments for ambient CO2 and three high-CO2 treatments (550, 750, 1000 µatm). In general, the response to OA throughout this region showed little variation, despite encompassing a range of biological and biogeochemical conditions. We observed consistent and marked increases in DMS concentrations relative to ambient controls (110% (28-223%) at 550 µatm, 153% (56-295%) at 750 µatm and 225% (79-413%) at 1000 µatm), and decreases in DMSP concentrations (28% (18-40%) at 550 µatm, 44% (18-64%) at 750 µatm and 52% (24-72%) at 1000 µatm). Significant decreases in DMSP synthesis rate constants (µDMSP /d) and DMSP production rates (nmol/d) were observed in two experiments (7-90% decrease), whilst the response under high CO2 from the remaining experiments was generally indistinguishable from ambient controls. Rates of bacterial DMS gross consumption and production gave weak and inconsistent responses to high CO2. The variables and rates we report increase our understanding of the processes behind the response to OA. This could provide the opportunity to improve upon mesocosm-derived empirical modelling relationships and to move towards a mechanistic approach for predicting future DMS concentrations.
Resumo:
So far, no experimental data of the infrared and Raman spectra of 13C isotopologue of dimethyl ether are available. With the aim of providing some clues of its low-lying vibrational bands and with the hope of contributing in a next spectral analysis, a number of vibrational transition frequencies below 300 cm−1 of the infrared spectrum and around 400 cm−1 of the Raman spectrum have been predicted and their assignments were proposed. Calculations were carried out through an ab initio three dimensional potential energy surface based on a previously reported one for the most abundant dimethyl ether isotopologue (M. Villa et al., J. Phys. Chem. A 115 (2011) 13573). The potential function was vibrationally corrected and computed with a highly correlated CCSD(T) method involving the COC bending angle and the two large amplitude CH3 internal rotation degrees of freedom. Also, the Hamiltonian parameters could represent a support for the spectral characterization of this species. Although the computed vibrational term values are expected to be very accurate, an empirical adjustment of the Hamiltonian has been performed with the purpose of anticipating some workable corrections to any possible divergence of the vibrational frequencies. Also, the symmetry breaking derived from the isotopic substitution of 13C in the dimethyl ether was taken into account when the symmetrization procedure was applied.
Resumo:
Typescript.
Uber die Oxydation des Dimethyl- respective Diaethylhydrotoluchinons und einige Derivate desselben /
Resumo:
Thesis (doctoral)--Universitat Basel, 1897.
Resumo:
Thesis (doctoral)--Universitat zu Basel, 1899.