297 resultados para DEXTRAN


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Inflammatory bowel disease (IBD) is characterized by chronic intestinal inflammation due to dysregulation of the mucosal immune system. The cytokines IL-1β and IL-18 appear early in intestinal inflammation and their pro-forms are processed via the caspase-1-activating multiprotein complex, the Nlrp3 inflammasome. Previously, we reported that the uptake of dextran sodium sulfate (DSS) by macrophages activates the Nlrp3 inflammasome and that Nlrp3(-/-) mice are protected in the acute DSS colitis model. Of note, other groups have reported opposing effects in regards to DSS susceptibility in Nlrp3(-/-) mice. Recently, mice lacking inflammasomes were found to develop a distinct intestinal microflora. Methods: To reconcile the contradicting observations, we investigated the role of Nlrp3 deficiency in two different IBD models: acute DSS colitis and TNBS (2,4,6-trinitrobenzene sulfonic acid)-induced colitis. In addition, we investigated the impact of the intestinal flora on disease severity by performing cohousing experiments of wild-type and Nlrp3(-/-) mice, as well as by antibiotic treatment. Results: Nlrp3(-/-) mice treated with either DSS or TNBS exhibited attenuated colitis and lower mortality. This protective effect correlated with an increased frequency of CD103+ lamina propria dendritic cells expressing a tolerogenic phenotype in Nlrp3(-/-) mice in steady state conditions. Interestingly, after cohousing, Nlrp3(-/-) mice were as susceptible as wild-type mice, indicating that transmission of endogenous bacterial flora between the two mouse strains might increase susceptibility of Nlrp3(-/-) mice towards DSS-induced colitis. Accordingly, treatment with antibiotics almost completely prevented colitis in the DSS model. Conclusions: The composition of the intestinal microflora significantly influences disease severity in IBD models comparing wild-type and Nlrp3(-/-) mice. This observation may - at least in part - explain contradictory results concerning the role of the inflammasome in different labs. Further studies are required to define the role of the Nlrp3 inflammasome in noninflamed mucosa under steady state conditions and in IBD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: Macrophages play a critical role in wound repair. However, the specific role of the different macrophage subtypes in wound repair remains incompletely understood. The aim of this study was to compare the wound repair activities of undifferentiated macrophages (M0), classically activated macrophages (M1) and alternatively activated (M2) macrophages. Methods: The macrophage repair activities of intestinal wounds were evaluated using in vitro and in vivo models. Results: All three macrophage subtypes enhanced wound closure in vitro, with the M2 macrophages demonstrating greater repair activities than the M0 and M1 macrophages. Injection of M0 and M2 macrophages into mice with experimental dextran sodium sulfate-induced colitis significantly enhanced ulcer repair when compared to control mice. In contrast, injection of M1 macrophages did not affect ulcer repair. Conclusions: These results underscore the wound repair capacity of different macrophage subsets. Notably, wound repair activity is not restricted to M2 macrophages, as the current literature suggests. © 2014 S. Karger AG, Basel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of albumin in tubular secretion of the organic anions p-aminohippurate (PAH, 21% albumin-bound at 1 microM) and methotrexate (MTX, 55% bound at 1 microM), and of the organic cation N1-methylnicotinamide (NMN, not bound), was investigated in isolated rabbit S2 proximal tubules. PAH or MTX secretory rates were low in the absence of colloids or in the presence of 1 g/dl dextran 40, and were reversibly two- to sevenfold stimulated by either 1 g/dl bovine (BSA, either regular, defatted, and/or dialyzed) or rabbit serum albumin, or by dialyzed native rabbit plasma. NMN secretion was not stimulated by either dextran or albumin. Luminal BSA had no effect, but stimulation of PAH secretion was observed when albumin was present in both lumen and bath. This secretion was BSA concentration-dependent up to a 1 g/dl BSA. Saturation experiments suggested that 1 g/dl BSA may increase PAH apparent affinity for secretion, with no change in its maximum velocity. Albumin appears therefore to facilitate organic anion proximal secretion by an effect unrelated to oncotic pressure or to the extent of organic anion binding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasma protein fraction (PPF) contaminated by factor XII active fragment (XIIf) may cause hypotensive reactions when infused to patients. This study was planned to assess in conscious normotensive rats whether the blood pressure response to the factor XIIf is mediated by an activation of the plasma kallikrein-kinin system or by stimulation of prostaglandin synthesis. To test whether the factor XIIf-induced blood pressure fall is due partially to an enhanced generation of vasodilating prostaglandins, the blood pressure effect of XIIf (1 microgram i.v.) was investigated 15 min after treatment with indomethacin (5 mg i.v.), an inhibitor of cyclo-oxygenase. Factor XIIf reduced mean blood pressure similarly in indomethacin- and vehicle-treated rats (-23 +/- 4 mmHg, n = 5, and -23 +/- 5 mmHg, n = 4, respectively). Other rats received factor XIIf 15 min after depletion of circulating prekallikrein by the administration of dextran sulfate. Thirty minutes after a 0.25 mg i.v. dose of this agent, plasma prekallikrein activity averaged 0.12 +/- 0.015 mumol/min/ml (n = 6) as compared to 2.48 +/- 0.31 mumol/min/ml in control rats (n = 4, P less than .001). Factor XIIf decreased mean blood pressure by only 4 +/- 2 mm Hg in rats pretreated with dextran sulfate. Thus, it was possible to blunt the acute hypotensive effect of factor XIIf by depleting circulating prekallikrein, but not by inhibiting prostaglandin production. This strongly suggests that the blood pressure effects of factor XIIf is mediated by a stimulation of the plasma kallikrein-kinin system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Crohn's disease bacteria could be detected in the adjacent mesenteric fat characterized by hypertrophy of unknown function. This study aimed to define effector responses of this compartment induced by bacterial translocation during intestinal inflammation. Dextran sulfate sodium-induced colitis served as a model of intestinal inflammation. Translocation of peptides and bacteria into mesenteric fat was evaluated. Innate functions of mesenteric fat and epithelium were characterized at whole tissue, cellular, and effector molecule levels. Orally applied peptides translocated in healthy wild-type (WT) mice. Bacterial translocation was not detected in healthy and acute but increased in chronic colitis. Mesenteric fat from colitic mice released elevated levels of cytokines and was infiltrated by immune cells. In MyD88(-/-) mice bacterial translocation occurred in health and increased in colitis. The exaggerated cytokine production in mesenteric fat accompanying colonic inflammation in WT mice was less distinct in MyD88(-/-) mice. In vitro studies revealed that fat not only increases cytokine production following contact with bacterial products, but also that preadipocytes are potent phagocytes. Colonic inflammation is accompanied by massive cytokine production and immune cell infiltration in adjacent adipose tissue. These effects can be considered as protective mechanisms of the mesenteric fat in the defense of bacterial translocation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Toll-like receptor ( TLR) s ignals are key to maintaining hostmicrobial i nteractions. T he T oll-interacting-protein (Tollip) is a ubiquitously-expressed inhibitor of inflammasome a nd TLR signaling. W e hypothesized that T ollip might control g ut homeostasis. G enetic ablation of T ollip d id not lead to spontaneous colitis b ut h ad d ramatic c onsequences on t he intestinal expression of the α-defensin cryptidin 4 and the C-type lectin R EGIIIβ. These c hanges were associated with intestinal dysbiosis a nd e nhanced colonization b y segmented filamentous bacteria - a k ey p ro-inflammatory component of the microbiota. Tollip deficiency increased susceptibility to dextran sulfate sodium (DSS) colitis and aggravated chronic Th17-driven colitis in IL-10-/- mice. Flora d epletion w ith a ntibiotics in T ollip-/- mice w as not sufficient to restore DSS colitis susceptibility and deletion of Tollip in n on-hematopoietic c ells using bone-marrow chimeras w as sufficient to increase s usceptibility t o DSS colitis. After D SS administration, we o bserved several e pithelial defects i n Tollip-/- mice including early tight junctions disruption, increased epithelial apoptosis, and increased intestinal permeability. Overall, our data show that T ollip significantly impacts intestinal h omeostasis by controlling b acterial ecology and intestinal r esponse to chemical and immunological stresses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inflammatory bowel diseases are commonly complicated by weight and bone loss. We hypothesized that IL-15, a pro-inflammatory cytokine expressed in colitis and an osteoclastogenic factor, could play a central role in systemic and skeletal complications of inflammatory bowel diseases. We evaluated the effects of an IL-15 antagonist, CRB-15, in mice with chronic colitis induced by oral 2% dextran sulfate sodium for 1 week, followed by another 1% for 2 weeks. During the last 2 weeks, mice were treated daily with CRB-15 or an IgG2a control antibody. Intestinal inflammation, disease severity, and bone parameters were evaluated at days 14 and 21. CRB-15 improved survival, early weight loss, and colitis clinical score, although colon damage and inflammation were prevented in only half the survivors. CRB-15 also delayed loss of femur bone mineral density and trabecular microarchitecture. Bone loss was characterized by decreased bone formation, but increased bone marrow osteoclast progenitors and osteoclast numbers on bone surfaces. CRB-15 prevented the suppression of osteoblastic markers of bone formation, and reduced osteoclast progenitors at day 14, but not later. However, by day 21, CRB-15 decreased tumor necrosis factor α and increased IL-10 expression in bone, paralleling a reduction of osteoclasts. These results delineate the role of IL-15 on the systemic and skeletal manifestations of chronic colitis and provide a proof-of-concept for future therapeutic developments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To test whether endotoxin decreases blood pressure acutely in rats by activating the plasma kinin-forming system, plasma kallikrein activity was determined in different experimental settings of endotoxemia. Conscious normotensive rats were infused for 45 min with endotoxin (LPS E. coli 0111:B4) at a dose (0.01 mg/min) which had no effect on blood pressure. Additional rats were infused with the vehicle of endotoxin. Plasma prekallikrein activity was measured at the end of the 45 min infusions. In other rats, a bolus intravenous injection of endotoxin (2 mg) was administered following the 45 min infusion of endotoxin or its vehicle. In these two latter groups of rats, plasma prekallikrein activity was determined 15 min after administration of the bolus dose of endotoxin. In rats pretreated with the endotoxin infusion, the bolus dose of endotoxin had no significant effect on blood pressure, whereas rats infused with the vehicle became and remained hypotensive up to the end of the experiment. There was however no significant difference in plasma prekallikrein activity within the different groups of rats. In another group of rats, dextran sulfate (0.25 mg i.v.), which activates factor XII and thereby the conversion of prekallikrein to kallikrein, induced a short-lasting fall in blood pressure. 15 min after administration of dextran sulfate, plasma prekallikrein activity was almost completely suppressed. These results obtained in unanesthetized rats strongly suggest that the blood pressure fall induced by E. coli endotoxin is not due to activation of prekallikrein and consequently of the kinin-forming system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVE: Photodynamic therapy (PDT) affects vascular barrier function and thus increases vessel permeability. This phenomenon may be exploited to facilitate targeted drug delivery and may lead to a new clinical application of photodynamic therapy. Here, we investigate the role of leukocyte recruitment for PDT-induced vascular permeabilization. STUDY DESIGN/MATERIAL AND METHODS: Fluorescein isothiocyanate dextran (FITC-D, 2,000 kDa) was injected intravenously 120 minutes after focal PDT on striated muscle in nude mice bearing dorsal skinfold chambers (Visudyne® 800 µg/kg, fluence rate 300 mW/cm2 , light dose of 200 J/cm2). Leukocyte interaction with endothelial cells was inhibited by antibodies functionally blocking adhesion molecules ("MABS-PDT" group, n = 5); control animals had PDT but no antibody injection (group "PDT", n = 7). By intravital microscopy, we monitored leukocyte rolling and sticking in real-time before, 90 and 180 minutes after PDT. The extravasation of FITC-D from striated muscle vessels into the interstitial space was determined in vivo during 45 minutes to assess treatment-induced alterations of vascular permeability. RESULTS: PDT significantly increased the recruitment of leukocytes and enhanced the leakage of FITC-D. Neutralization of adhesion molecules before PDT suppressed the rolling of leukocytes along the venular endothelium and significantly reduced the extravasation of FITC-D as compared to control animals (156 ± 27 vs. 11 ± 2 (mean ± SEM, number of WBC/30 seconds mm vessel circumference; P < 0.05) at 90 minutes after PDT and 194 ± 21 vs. 14 ± 4 at 180 minutes after PDT). In contrast, leukocyte sticking was not downregulated by the antibody treatment. CONCLUSION: Leukocyte recruitment plays an essential role in the permeability-enhancing effect of PDT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Granulocyte-macrophage colony-stimulating factor (GM-CSF) therapy is effective in treating some Crohn's disease (CD) patients and protects mice from colitis induced by dextran sulfate sodium (DSS) administration. However, its mechanisms of action remain elusive. We hypothesized that GM-CSF affects intestinal mucosal repair. METHODS: DSS colitic mice were treated with daily pegylated GM-CSF or saline and clinical, histological, and inflammatory parameters were kinetically evaluated. Further, the role of bone marrow-derived cells in the impact of GM-CSF therapy on DSS colitis was addressed using cell transfers. RESULTS: GM-CSF therapy reduced clinical signs of colitis and the release of inflammatory mediators. GM-CSF therapy improved mucosal repair, with faster ulcer reepithelialization, accelerated hyperproliferative response of epithelial cells in ulcer-adjacent crypts, and lower colonoscopic ulceration scores in GM-CSF-administered mice relative to untreated mice. We observed that GM-CSF-induced promotion of mucosal repair is timely associated with a reduction in neutrophil numbers and increased accumulation of CD11b(+) monocytic cells in colon tissues. Importantly, transfer of splenic GM-CSF-induced CD11b(+) myeloid cells into DSS-exposed mice improved colitis, and lethally irradiated GM-CSF receptor-deficient mice reconstituted with wildtype bone marrow cells were protected from DSS-induced colitis upon GM-CSF therapy. Lastly, GM-CSF-induced CD11b(+) myeloid cells were shown to promote in vitro wound repair. CONCLUSIONS: Our study shows that GM-CSF-dependent stimulation of bone marrow-derived cells during DSS-induced colitis accelerates colonic tissue repair. These data provide a putative mechanism for the observed beneficial effects of GM-CSF therapy in Crohn's disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND & AIMS: Priming of T cells by dendritic cells (DCs) in the intestinal mucosa and associated lymphoid tissues helps maintain mucosal tolerance but also contributes to the development of chronic intestinal inflammation. Chemokines regulate the intestinal immune response and can contribute to pathogenesis of inflammatory bowel diseases. We investigated the role of the chemokine CCL17, which is expressed by conventional DCs in the intestine and is up-regulated during colitis. METHODS: Colitis was induced by administration of dextran sodium sulfate (DSS) to mice or transfer of T cells to lymphopenic mice. Colitis activity was monitored by body weight assessment, histologic scoring, and cytokine profile analysis. The direct effects of CCL17 on DCs and the indirect effects on differentiation of T helper (Th) cells were determined in vitro and ex vivo. RESULTS: Mice that lacked CCL17 (Ccl17(E/E) mice) were protected from induction of severe colitis by DSS or T-cell transfer. Colonic mucosa and mesenteric lymph nodes from Ccl17-deficient mice produced lower levels of proinflammatory cytokines. The population of Foxp3(+) regulatory T cells (Tregs) was expanded in Ccl17(E/E) mice and required for long-term protection from colitis. CCR4 expression by transferred T cells was not required for induction of colitis, but CCR4 expression by the recipients was required. CCL17 promoted Toll-like receptor-induced secretion of interleukin-12 and interleukin-23 by DCs in an autocrine manner, promoted differentiation of Th1 and Th17 cells, and reduced induction of Foxp3(+) Treg cells. CONCLUSIONS: The chemokine CCL17 is required for induction of intestinal inflammation in mice. CCL17 has an autocrine effect on DCs that promotes production of inflammatory cytokines and activation of Th1 and Th17 cells and reduces expansion of Treg cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary: Absorption of iron and local tissue irritation after intramuscular or subcutaneous administration of an iron-dextran preparation to piglets

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To evaluate the efficacy of coulomb-controlled iontophoresis (CCI) for delivery of riboflavin prior to corneal collagen cross-linking (CXL). METHODS: The eyes of 20 8-week-old Lewis rats, subject to epithelium-ON (epi-ON, n = 20 eyes) or epithelium-OFF (epi-OFF, n = 20 eyes) conditions, were used to evaluate the in vivo delivery of two riboflavin solutions: 0.1% riboflavin-20% dextran T500 solution (riboflavin-dextran) and 0.1% riboflavin 5'-phosphate (riboflavin-phosphate). After systemic intramuscular anesthesia, 0.25 mL of the photosensitizing agent was delivered by either instillation or CCI (2.11 mA/cm(2) for 4 or 10 minutes) into either epithelial condition. The CCI probe on the eye without current served as control. Confocal microscopy of flat-mounted corneas was used to analyze intracorneal penetration and fluorometry was used to quantify riboflavin in the aqueous within 30 minutes of treatment. RESULTS: Instillation and CCI allowed for uniform delivery of riboflavin-dextran throughout the stroma after epithelial debridement. Transepithelial delivery of riboflavin-dextran was not efficacious. Riboflavin-phosphate was successfully delivered in both epithelium conditions. Complete saturation of the cornea was achieved using CCI after removing the epithelium, the epi-ON case allowed for limited diffusion. Increasing the time from 4 to 10 minutes greatly increased the amount of riboflavin detected in the cornea and aqueous humor. CONCLUSIONS: Coulomb-controlled iontophoresis is an effective technique for transepithelial delivery of riboflavin-phosphate into the cornea. This drug delivery method would allow clinicians to significantly shorten the time required for the CXL procedure, with or without epithelial debridement. Whether efficient crosslinking can be achieved through an intact epithelium remains to be demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: Targeting neuroprotectants specifically to the cells that need them is a major goal in biomedical research. Many peptidic protectants contain an active sequence linked to a carrier such as the transactivator of transcription (TAT) transduction sequence, and here we test the hypothesis that TAT-linked peptides are selectively endocytosed into neurons stressed by excitotoxicity and focal cerebral ischemia. METHODS: In vivo experiments involved intracerebroventricular injection of TAT peptides or conventional tracers (peroxidase, fluorescein isothiocyanate-dextran) in young rats exposed to occlusion of the middle cerebral artery at postnatal day 12. Cellular mechanisms of uptake were analyzed in dissociated cortical neuronal cultures. RESULTS: In both models, all tracers were taken up selectively into stressed neurons by endocytosis. In the in vivo model, this was neuron specific and limited to the ischemic area, where the neurons displayed enhanced immunolabeling for early endosomal antigen-1 and clathrin. The highly efficient uptake of TAT peptides occurred by the same selective mechanism as for conventional tracers. All tracers were targeted to the nucleus and cytoplasm of neurons that appeared viable, although ultimately destined to die. In dissociated cortical neuronal cultures, an excitotoxic dose of N-methyl-D-aspartate induced a similar endocytosis. It was 100 times more efficient with TAT peptides than with dextran, because the former bound to heparan sulfate proteoglycans at the cell surface, but it depended on dynamin and clathrin in both cases. INTERPRETATION: Excitotoxicity-induced endocytosis is the main entry route for protective TAT peptides and targets selectively the neurons that need to be protected.