996 resultados para DENTIN


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To determine the influence of different dentin treatments on the microtensile bond strengths of adhesive resins to dentin. Methods: Fifteen human molars were ground to 600-grit to obtain flat root-dentin surfaces. Five different dentin treatments were evaluated: Group 1 - 10% phosphoric acid for 30 seconds; Group 2 - 37% phosphoric acid for 15 seconds; Group 3 - air-abrasion for 10 seconds followed by 10% phosphoric acid for 30 seconds; Group 4 - air-abasion for 10 seconds followed by 37% phosphoric acid for 15 seconds. The dental adhesive (OptiBond Solo Plus) was applied according to manufacturer's instructions and followed by composite (Z100) application to provide sufficient bulk for microtensile bond testing. All samples were placed in distilled water for 24 hours at 37degreesC, thermocycled for 500 cycles in distilled water at 10degreesC and 50degreesC, and serially sliced perpendicular to the adhesive surface and subjected to tensile forces (0.5 mm/minute). Additional samples were prepared for SEM to observe the adhesive interface. Results: Group 2 exhibited significantly (P< 0.05) lower bond strength values than all other treatments. The bond strengths of the different conditions were (in MPa): Group 1: 43.0 +/- 16.1; Group 2: 29.2 +/- 8.3; Group 3: 48.1 +/- 14.2; Group 4: 41.0 +/- 9.3. The dentin treated with phosphoric acid 37% for 15 seconds showed the lowest values of microtensile bond strength. The results obtained with Groups 1, 3 and 4 were statistically similar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was conducted to analyze the ablation rate and micromorphological aspects of microcavities in enamel and dentin of primary and permanent teeth using a Er:YAG laser system. Micromorphological evaluation has been performed in terms of permanent teeth; however, little information about Er: YAG laser interaction with primary teeth can be found in the literature. Because children have been the most beneficiary patients with laser therapy in our offices, it is extremely necessary to compare the effects of this kind of laser system on the enamel and dentin of permanent and primary teeth. In this study, we used eleven intact primary anterior exfoliated teeth and six extracted permanent molar teeth. We used a commercial laser system: a Er: YAG Twin Light laser system (Fotona Medical Lasers, Slovenia) at 2940 nm, changing average energy levels per pulse ( 100, 200, 300, and 400 mJ) producing 48 microcavities in enamel and dentin of primary and permanent teeth. Primary teeth are more easily ablated than are permanent teeth, when related to enamel or dentin. However, while this laser system is capable of slowly revealing the enamel's microstructure, in dentin only the lowest laser energies permit this kind of observation, more easily decomposing the original tissue aspect, when related to primary or permanent teeth. Statistically, the only different factor at the 5% level was an energy per pulse of 400 mJ, confirming the results found in SEM. Our results showed that dentin in both primary and permanent teeth is less resistant to Er: YAG laser ablation; this fact is easily observed under SEM observation and through the ablation rate evaluation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the effect of mechanical cycling on the bond strength of fiber posts bonded to root dentin. The hypotheses examined were that bond strength is not changed after fatigue testing and bond strength does not present vast variations according to the type of fiber post. Sixty crownless, single-rooted human teeth were endodontically treated, with the space prepared at 12 mm. Thirty specimens received a quartz fiber post (Q-FRC (DT Light-Post), and the remaining 30 specimens received a glass fiber post (G-FRC) (FRC Postec Plus). All the posts were resin luted (All Bond+Duolink), and each specimen was embedded in a cylinder with epoxy resin. The specimens were divided into six groups: G1-Q-FRC+no cycling, G2- Q-FRC+20,000 cycles (load: 50N, angle of 45 degrees; frequency: 8Hz); G3- Q-FRC+2,000,000 cycles; G4- G-FRC+no cycling; G5- G-FRC+20,000 cycles; G6- GFRC+2,000,000 cycles. The specimens were cut perpendicular to their long axis, forming 2-mm thick disc-samples, which were submitted to the push-out test. ANOVA (alpha=.05) revealed that: (a) QFRC (7.1 +/- 2.2MPa) and G-FRC (6.9 +/- 2.1MPa) were statistically similar (p=0.665); (b) the no cycling groups (7.0 +/- 2.4MPa), 20,000 cycles groups (7.0 +/- 2.1MPa) and 2,000,000 cycles groups (7.0 +/- 2.0MPa) were statistically similar (p=0.996). It concluded that mechanical cycling did not affect the bond strength of two fiber posts bonded to dentin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and objectives: To assess the microhardness of dentin subsurface after Er:yttrium-aluminum-garnet (YAG) and Nd:YAG laser irradiation. Study design/materials and methods: Twenty-four bovine incisors, without pulp, were used. The vestibular surface was worn out until the dentin was reached and divided in mesial and distal regions. The samples were divided into two groups: GI-distal, irradiated by Er: YAG laser, and GII-distal, irradiated by Nd: YAG laser. The mesial area was protected so as to not receive the laser irradiation. The measurements were made on Vickers digital microhardmeter. Results: For GI-there was no significant statistical difference, Cl(-4.59 to 0.78), between the values of irradiated (55.61 +/- 4.38) and unirradiated (57.51 +/- 4.00) areas. For GII-the values were higher for the irradiated (62.21 +/- 6.48) compared to the unirradiated (57.82 +/- 5.42) area, CI(1.65 +/- to 7.13). Conclusions: There was an increase of dentin microhardness when the Nd: YAG was used, but the Er: YAG did not cause significant alterations in dentin microhardness. (c) 2007 Laser Institute of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bond strength of composite resins (CRs) to dentin is influenced by the interfacial microstructure of the hybrid layer (HL) and the resin tags (TAG). The contemporary self-etching primer adhesive systems overcame the inconvenient of the etch-and-rinse protocol. Studies, however, have demonstrated that HL thickness and TAG length vary according to the wetting time and additional use of acid-etching prior to self-etching primers. This study investigated the localized stress distribution in the HL and the dentin/adhesive interface. Two HL thicknesses (3 or 6 mu m), two TAG lengths (13 or 17 mu m) and two loading conditions (perpendicular and oblique-25 degrees) were investigated by the finite element (FE) analysis. Five two-dimensional FE models (M) of a dentin specimen restored with CR (38 x 64 mu m) were constructed: M1 - no HL and no TAG; M2 - 3 mu m of HL and 13 mu m of TAG; M3 - 3 mu m of HL and 17 mu m of TAG; M4 - 6 mu m of HL and 13 mu m of TAG; and M5 - 6 mu m of HL and 17 mu m of TAG. Two distributed loadings (L) (20N) were applied on CR surface: L1 - perpendicular, and L2 - oblique (25 degrees). Fixed interfacial conditions were assigned on the border of the dentin specimen. Ansys 10.0 (Ansys (R), Houston, PA, USA) software was used to calculate the stress fields. The peak of von Mises (sigma(vM)) and maximum principal stress (sigma(max)) was higher in L2 than in L1. Microstructures (HL and TAG) had no effect on local stresses for L1. Decreasing HL decreased sigma(vM) and sigma(max) in all structures for L2, but the TAG length had influence only on the peributular dentin. The thickness of HL had more influence on the sigma(vM) and sigma(max) than TAG length. The peritubular dentin and its adjacent structures showed the highest sigma(vM) and sigma(max), mainly in the oblique loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To evaluate the influence of different cross-head speeds on shear bond strength test on the dentin surface.Methods: One hundred and twenty extracted bovine incisors were embedded in polystyrene resin. The specimens were prepared by wet grinding with 320-, 400- and 600-grit Al2O3 paper exposing dentin. After the application of the adhesive system Single Bond (3M) to etched dentin, the composite resin Z-100 (3M) was applied and light cured. The specimens were randomly assigned to four groups (n = 30). The shear bond strength tests were performed with an EMIC DL 500 universal testing machine at four different cross-head speeds: 0.50 (A); 0.75 (B); 1.00 (C); and 5.00 mm/min (D).Results: the mean values of shear bond strength in MPa (SD) were: A, 11.78 (3.91); B, 11.82 (4.78); C, 16.32 (6.45); D, 15.46 (5.94). The data were analyzed with one-way ANOVA and Tukey's test (alpha = 0.05). The results indicated that A = B < C = D. The fracture pattern was evaluated by visual analysis in a stereomicroscope (25 x). The percentage of fractures that occurred at the adhesive interface were: A, 92.5%; B, 91.6%; C, 70.0%; D, 47.0%. The Student's t-test to percentages ( = 0.05) indicated that there were no significant differences among A, B and C; A and B differed from D, and there was no significant difference between C and D.Significance: Different cross-head speeds may influence the shear bond strength and the fracture pattern in dentin substrate. Shear bond strength using cross-head speeds of 0.50 and 0.75 mm/min should be preferred. (C) 2001 Academy of Dental Materials. published by Elsevier B.V. Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the number and the diameter of dentin tubules in root canals, in the cervical, middle, and apical thirds, of human and bovine teeth. Twenty-four single-rooted, human premolars were divided into four groups (n = 6): GH1, 10 to 15 years; GH2, 16 to 30 years; GH3, 31 to 45 years; and GH4, 46 to 80 years; and 24 bovine incisors were divided into four groups (n = 6): GB1, central; GB2, lateral first; GB3, lateral second; and GB4, lateral third. The crowns were removed from the specimens, which were then debrided, sectioned longitudinally in the vestibular-lingual direction, and submitted to ultrasonic cleaning. Scanning electron microscopic evaluations were made with 1,000x and 5,000x magnification. According to the root thirds, statistically significant differences were found both for the number and the diameter of dentin tubules, with the cervical third presenting the highest mean values for both specimen types. As regards the number of dentin tubules, it was observed that the bovine specimens presented a significantly higher mean value than the human specimens; this difference was not observed when the diameters of the two types were compared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the influence of intrapulpal pressure and dentin depth on bond strengths of an etch-and-rinse and a self-etching bonding agent to dentin in vitro and in vivo. Twenty-four pairs of premolars were randomly divided into four groups (n = 6) according to the dentin bonding agent, Single Bond and Clearfil SE Bond, and intrapulpal pressure, null or positive. Each tooth of the pair was further designated to be treated in vivo or in vitro. The intrapulpal pressure was controlled in vivo by the delivery of local anesthetics containing or not a vasoconstrictor, while in vitro, it was achieved by keeping the teeth under hydrostatic pressure. Class I cavities were prepared and the dentin bonding agents were applied followed by incremental resin restoration. For the teeth treated in vitro, the same restorative procedures were performed after a 6 month-storage period. Beams with I mm 2 cross-sectional area were prepared and, microtensile tested. Clearfil SE Bond was not influenced by any of the variables of the study, while bond strengths produced in vitro were significatly higher for Single Bond. Overall, lower bond strengths were produced in deep dentin, which reached statistical significance when Single Bond was applied under physiological or simulated intrapulpal pressure. In conclusion, in vitro bonding may overestimate the immediate adhesive performance of more technique-sensitive dentin bonding systems. The impact of intrapulpal pressure on bond strength seems to be more adhesive dependent than dentin morphological characteristics related to depth. (C) 2007 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: the purpose of this study was to evaluate, by scanning electron microscopy (SEM), the effects of Nd:YAG laser irradiation applied perpendicular or parallel to the root canal dentin wall. Methods: Thirty human teeth were divided into two groups: Group A (20 roots), laser application with circular movements, parallel to the dentin root surface; and Group B (10 roots), roots cut longitudinally and laser applied perpendicular to the root surface. Group A was subdivided into A1 (10 roots), laser application with 100 mJ, 15 Hz and 1.5 W; and A2 (10 roots) with 160 mJ, 15 Hz, and 2.4 W. Group B was subdivided into B1 (10 hemisections) and B2 (10 hemi-sections) with parameters similar to A I and A2. Four applications of 7-sec duration were performed, with a total exposure of 28 sec. SEM evaluations were made in the cervical, middle, and apical thirds, with 500X and 2000X magnifications. Morphological changes scores were attributed, and the results were submitted to Kruskal Wallis statistical test (5%). Results: Significant statistical differences were found between groups A and B (p = 0.001). In groups A1 and A2, few areas of dentin melting were observed. In groups B1 and B2, areas of melting dentin covering dentin surface were observed. Conclusions: It was concluded that intracanal laser application with circular movements (parallel to the surface) produces limited morphological changes in root canal dentin wall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: the purpose of this study was to verify if the application of the Nd:YAG laser following pretreatment of dentin with adhesive systems that were not light cured in class V cavities and were prepared with Er:YAG laser would promote better sealing of the gingival margins when compared to cavities prepared the conventional way. Background Data: Previous studies had shown that the pretreatment of dentin with laser irradiation after the application of an adhesive system is efficient in achieving higher shear bond and tensile bond strength. Materials and Methods: Er:YAG laser (Kavo-Key, Germany) with 350 mJ, 4 Hz, and 116.7 J/cm(2) was used for cavity preparation. The conventional preparation was made with diamond bur mounted in high-speed turbine. Dentin treatment was accomplished using an Nd:YAG laser (Pulse Master 1000, ADT. USA) at 60 mJ, 10 Hz, and 74.65/cm(2) following application of the adhesive system. The cavities were stored with Single Bond/Z100 and Prime & Bond NT/TPH. Eighty bovine incisors were used, and class V preparations were done at buccal and lingual surfaces divided into eight groups: (1) Er:YAG preparation + Prime & Bond NT + TPH; (2) Er:YAG preparation + Single Bond + Z100; (3) Er:YAG preparation + Single Bond + Nd:YAG + Z100; (4) Er:YAG preparation + Prime & Bond NT + Nd:YAG + TPH; (5) conventional preparation + Prime & Bond NT + TPH; (6) conventional preparation + Single Bond + Z100; (7) conventional preparation + Single Bond + Nd:YAG + Z100; (8) conventional preparation + Prime & Bond NT + Nd:YAG + TPH. All specimens were thermocycled for 300 full cycles between 5 degreesC +/- 2 degreesC and 55 degreesC +/- 2 degreesC (dwell time of 30 sec), and stored in 50% silver nitrate solution for 24 h soaked in photodeveloping solution and exposed to fluorescent light for 6 h. After this procedure, the specimens were sectioned longitudinally in 3 portions and the extension of microleakage at the gingival wall was determined following a criteria ranging from 0 to 4 using scanning electron microscopy (SEM). The medium portion sectioned of each specimen was polished and prepared for nanoleakage avaliation by SEM. Results: Kruskall-Wallis and Miller statistical tests determined that group 3 presented less microleakage and nanoleakage. Conclusion: Application of the Nd:YAG laser following pretreatment of dentin with adhesive Single Bond non-photocured Single Bond adhesive in cavities prepared with Er:YAG promote better sealing of the gingival margins.