121 resultados para DENTIFRICE
Resumo:
Since the use of bovine instead of human dentine to evaluate cariogenic and anticariogenic substances is not well established, this in situ study was conducted. Eleven volunteers wore palatal acrylic devices containing 4 dentine slabs (2 human and 2 bovine). Sucrose solution (20%) was dripped over all slabs 4 times a day, simulating a cariogenic challenge. Dentifrice slurries, fluoridated or not, were dripped over specified dentine slabs 3 times a day to evaluate caries reduction. After 14 days, the biofilm formed on the dentine slabs was collected for microbiological analysis. In dentine, mineral loss (DeltaZ) and lesion depth (LD) were determined by cross-sectional microhardness and by polarized light microscopy, respectively. The total streptococci and mutans streptococci counts in the biofilm formed either on human or on bovine slabs, whether treated or not with fluoride dentifrice, were not statistically different. The DeltaZ and the LID values of dentine treated with fluoride dentifrice were significantly lower than the values of dentine treated with non-fluoride dentifrice. The differences in the DeltaZ and LD values between the human and bovine dentine were not statistically significant. The results suggest that bovine dentine can be used instead of human to evaluate caries development and inhibition. Copyright (C) 2003 S. Karger AG, Basel.
Resumo:
The usefulness of fluoride-releasing restorations in secondary caries prevention may be questioned because of the presence of other common sources of fluoride and because of ageing of the restorations. This study tested the hypothesis that glass-ionomer cement restorations, either aged or unaged, do not prevent secondary root caries, when fluoride dentifrice is frequently used. Sixteen volunteers wore palatal appliances in two phases of 14 days, according to a 2 x 2 crossover design. In each phase the appliance was loaded with bovine root dentine slabs restored with either glass-ionomer or resin composite, either aged or unaged. Specimens were exposed to cariogenic challenge 4 times/day and to fluoridated dentifrice 3 times/day. The fluoride content in the biofilm (FB) formed on slabs and the mineral loss (Delta Z) around the restorations were analysed. No differences were found between restorative materials regarding the FB and the Delta Z, for either aged (p = 0.792 and p = 0.645, respectively) or unaged (p = 1.00 and p = 0.278, respectively) groups. Under the cariogenic and fluoride dentifrice exposure conditions of this study, the glass-ionomer restoration, either aged or unaged, did not provide additional protection against secondary root caries. Copyright (c) 2006 S. Karger AG, Basel.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
To compare the abrasion wear resistance and superficial roughness of different glass ionomer cements used as restorative materials, focusing on a new nanoparticulate material. Material and Method: Three glass ionomer cements were evaluated: Ketac Molar, Ketac N100 and Vitremer (3M ESPE, St. Paul, MN, USA), as well as the Filtek Z350 (3M ESPE, St. Paul, MN, USA). For each material were fabricated circular specimens (n=12), respecting the handling mode specified by the manufacturer, which were polished with sandpaper disks of decreasing grit. The wear was determined by the amount of mass (M) lost after brushing (10,000 cycles) and the roughness (Ra) using a surface roughness tester. The difference between the Minitial and Mfinal (ΔM) as well as beroughness of aesthetic restorative materials: an in vitro comparison. SADJ. 2001; 56(7): 316-20. 11. Yip HK, Peng D, Smales RJ. Effects of APF gel on the physical structure of compomers and glass ionomer cements. Oper. Dent. 2001; 26(3): 231-8. 12. Ma T, Johnson GH, Gordon GE. Effects of chemical disinfectants on the surface characteristics and color of denture resins. J Prosthet Dent 1997; 77(2): 197-204. 13. International organization for standardization. Technical specification 14569-1. Dental Materials – guidance on testing of wear resistance – PART I: wear by tooth brushing. Switzerland: ISO; 1999. 14. Bollen CML, Lambrechts P, Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater.1997; 13(4): 258-9. 15. Kielbassa AM, Gillmann C, Zantner H, Meyer-Lueckel H, Hellwig E, Schulte-Mönting J. Profilometric and microradiographic studies on the effects of toothpaste and acidic gel abrasivity on sound and demineralized bovine dental enamel. Caries Res. 2005; 39(5): 380-6. 16. Tanoue N, Matsumara H, Atsuta M. Wear and surface roughness of current prosthetic composites after toothbrush/dentifrice abrasion. J Prosthet Dent. 2000; 84(1): 93-7. 17. Heath JR, Wilson HJ. Abrasion of restorative materials by toothpaste. J Oral Rehabil. 1976; 3(2): 121-38. 18. Frazier KB, Rueggeberg FA, Mettenburg DJ. Comparasion of wearresistance of class V restorative materials. J Esthet Dent. 1998; 10(6): 309-14. 19. Momoi Y, Hirosakil K, Kohmol A, McCabe JF. In vitro toothebrushdentifrrice abrasion of resin-modified glass ionomers. Dent Mater. 1997; 13(2): 82-8. 20. Turssi CP, Magalhães CS, Serra MC, Rodrigues Jr.AL. Surface roughness assessment of resin-based materials during brushing preceded by pHcycling simulations. Oper Dent. 2001; 26(6): 576-84. 21. Wang L, Cefaly DF, Dos Santos JL, Dos Santos JR, Lauris JR, Mondelli RF, et al. In vitro interactions between lactic acid solution and art glassionomer cements. J Appl Oral Sci. 2009; 17(4): 274-9. 22. Carvalho FG, Fucio SB, Paula AB, Correr GM, Sinhoreti MA, PuppinRontani RM. Child toothbrush abrasion effect on ionomeric materials. J Dent Child (Chic). 2008; 75(2): 112-6. 23. Coutinho E, Cardoso MV, De Munck J, Neves AA, Van Landuyt KL, Poitevin A, et al. Bonding effectiveness and interfacial characterization of a nano-filled resin-modified glass-ionomer. Dent Mater. 2009; 25(11): 1347-57. tween Rainitial and Rafinal (ΔRa) were also used for statistical analysis (α=0.05). Results: Except for the composite, significant loss of mass was observed for all glass ionomer cements and the ΔM was comparable for all of them. Significant increase in roughness was observed only for Vitremer and Ketac N100. At the end of the brushing cycle, just Vitremer presented surface roughness greater than the composite resin. Conclusion: All glass ionomer cements showed significant weight loss after 10,000 cycles of brushing. However, only Vitremer showed an increase of roughness greater than the Z350 resin, while the nanoparticulate cement Ketac N100 showed a smooth surface comparable to the composite.
Resumo:
The purpose of this study is to verify the effect of three different types of dentifrices on the superficial microhardness of bovine enamel. Methods: Forty-eight 4x4mm dental fragments were polished and randomly divided into 4 groups: GI, conventional silica-based dentifrice; GII, hydrogen peroxide-based dentifrice; GIII, carbamide peroxide-based dentifrice; and GIV, immersion in artificial saliva. After polished, the specimens received five indentations of 25g static load, for 5 seconds. Subsequently, specimens from groups GI, GII and GIII were immersed in solution containing dentifrice and distilled water, in weight proportion of 1:2, for 15 minutes daily. After this period, fragments were rinsed in tap water and stored in artificial saliva at 37oC. This procedure was repeated for 21 days and then a new analysis of the microhardness was performed. Results and conclusion: The results were submitted to ANOVA and Fisher’s test at 5%. It was concluded that all samples treated with dentifrices showed hardness decrease, being most pronounced in dentifrices containing peroxide.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Purpose: To investigate the cumulative effects of brushing (B) or immersion (I), using different cleansing agents, on the surface roughness, hardness and color stability of a heat-polymerized denture resin, Lucitone 550 (L), and a hard chairside reline resin, Tokuyama Rebase Fast II (T). Methods: A total of 316 specimens (10 x 2 mm) were fabricated. The specimens (n= 9) were divided into brushing or immersion groups according to the following agents: dentifrice/distilled water (D), 1% sodium hypochlorite (Na0C1), Corega Tabs (Pb), 1% chlorhexidine gluconate (Chx), and 0.2% peracetic acid (Ac). Brushing and immersion were tested independently. Assays were performed after 1, 3, 21, 45 and 90 blushing cycles or immersion of 10 seconds each. Data were evaluated statistically by repeated measures ANOVA. Tukey's honestly significant difference (HSD) post-hoc test was used to determine differences between means (a= 0.05). Results: For L there was no statistically significant difference in roughness, except a significant decrease in roughness by brushing with D. T showed a significant effect on the roughness after 90 immersions with Ac. Hardness values decreased for L when specimens were immersed or brushed in Na0C1 and Pb. The hardness of T decreased with increases in the repetitions (immersion or brushing), regardless of the cleaning method. Values of color stability for L resin showed significant color change after brushing with and immersion in Ac and Pb. Brushing with D exhibited a higher incidence of color change. For T there were no significant differences between cleaning agents and repetitions in immersion. A color change was noted after three brushings with the Ac, Chx, and D. Brushing with dentifrice decreased roughness of L. Immersion in or brushing with Na0C1 and Pb decreased the hardness of L. For T, hardness decreased with increases in immersions or brushing. Color changes after the immersion in or brushing with cleaning agents were clinically acceptable according to National Bureau of Standards parameters for both resins.
Resumo:
This study aimed to evaluate saliva and plaque as indicators of intraoral fluoride (F) levels after the use of conventional and high-fluoride dentifrices.Subjects were randomly assigned to brush their teeth with conventional (1000 ppm F), high-fluoride (5000 ppm F), and placebo dentifrices (fluoride free) for 10 days, following a double-blind, crossover protocol. Saliva and plaque samples were collected on the morning of the 5(th) and 10th days, respectively at 1 and 12 h after brushing, and analyzed with an ion-selective electrode after HMDS-facilitated diffusion. Data were analyzed by two-way repeated measures ANOVA, Tukey's test and Spearman's correlation coefficient (p < 0.05).Plaque and salivary F levels were significantly increased after the use of conventional and high-fluoride dentifrices when compared to values obtained for placebo, except plaque 12 h after the use of conventional dentifrice. A positive and significant correlation was found between fluoride concentrations in plaque and saliva for both times of sample collection.Both indicators assessed were able to detect significant differences among treatments and between times after brushing. The use of a high-fluoride dentifrice is able to significantly increase intraoral fluoride levels throughout the day, being therefore a useful therapy for patients at high caries risk.A dentifrice with high fluoride concentration could be regarded as a useful therapy of F delivery for high caries-risk patients, since intraoral F levels were sustained throughout most of the day after using this formulation.
Resumo:
Abrasive wear is one of the most common type of wear that not only affect teeth, as also dental restorations. Thus to investigate one of the etiological factors as tooth brushing procedure is clinical relevant in order to select the best material combination that may prevent damage of resin dental restoration's abrasion. This study evaluated the influence of tooth brushing on mass loss and surface roughness of direct Venus (Vs) and indirect Signum (Sg) resin composites, with and without a surface sealant, Fortify (F). Twenty-four specimens were prepared with each resin composite, using their proprietary curing units, according to manufacturer's instructions. All the specimens were polished and ultrasonically cleaned in distilled water for 5 minutes. Half of the specimens of each resin (n = 12) were covered with F (Vs F and Sg F ), except for the control (C) specimens (Vs C and Sg C ), which were not sealed. Mass loss (ML) as well as surface roughness (Ra ) was measured for all the specimens. Then, the specimens were subjected to toothbrush-dentifrice abrasion, using a testing machine for 67.000 brushing strokes, in an abrasive slurry. After brushing simulation, the specimens were removed from the holder, rinsed thoroughly and blot dried with soft absorbent paper. The abrasion of the material was quantitatively determined with final measurements of ML and surface roughness, using the method described above. ML data were analyzed by two-way analysis of variance (ANOVA) and the analysis indicated that resin composites were not statistically different; however, the specimens sealed with F showed higher ML. Ra mean values of the groups Vs F and Sg F significantly increased. Tooth brushing affects mainly the roughness of the direct and indirect resin composites veneered with a sealant.
Resumo:
To evaluate the effect of a fluoride dentifrice containing sodium hexametaphosphate (HMP) on enamel demineralization in situ. This double-blind and cross-over study consisted of 3 phases (7 days each) in which 12 volunteers wore intraoral appliances containing four enamel bovine blocks. Specimens were treated (3×/day) with placebo (no F or HMP), 1100ppm F (1100F) and 1100F plus HMP1% (1100F-HMP1%) toothpastes, and the cariogenic challenge was performed using a 30% sucrose solution (6×/day). Final surface hardness, the percentage of surface hardness loss (%SH), the integrated loss of subsurface hardness (ΔKHN), as well as enamel calcium (Ca), phosphorus (P) and firmly-bound fluoride (F) were determined. Also, biofilm formed on the blocks were analyzed for F, Ca, P and insoluble extracellular polysaccharide (EPS) concentrations. Data were submitted 1-way ANOVA, followed by Student-Newman-Keuls' test (p<0.05). 1100F-HMP1% promoted the lowest %SH and ΔKHN among all groups (p<0.001). The addition of HMP1% to 1100F did not enhance enamel F uptake, but significantly increased enamel Ca concentrations (p<0.001). Similar EPS concentrations were seen for 1100F-HMP1% and 1100F groups (p>0.05). All the groups were supersaturated with respect to HA. However, only 1100F-HMP1% group was supersaturated with respect to CaF2 (p<0.05). The ionic activities of F(-), CaF(+) and HF(0) for the 1100F-HMP1% group were the highest among all groups (p<0.001). The addition of HMP1% to a conventional toothpaste significantly reduces enamel demineralization in situ when compared to 1100F. This dentifrice could be a viable alternative to patients at high risk of caries.
Resumo:
This study evaluated the effect of fluoride gels, supplemented or not with sodium hexametaphosphate (HMP), on enamel erosive wear in situ. Twelve healthy volunteers wore palatal appliances containing four bovine enamel discs. Subjects were randomly allocated into four experimental phases (double-blind, crossover protocol) according to the gels: Placebo (no fluoride or HMP), 1% NaF, 2% NaF, and 1% NaF+9% HMP. Enamel discs were selected after polishing and surface hardness analysis, and treated only once with the respective gels prior to each experimental phase. Erosion (ERO) was performed by extra-oral immersion of the appliance in 0.05M citric acid, pH 3.2 (four times/day, five minutes each, 5 days). Additional abrasion (ERO+ABR) was produced on only two discs by toothbrushing with fluoridated dentifrice after ERO (four times/day, 30s, 5 days). The specimens were submitted to profilometry and hardness analysis. The results were analyzed by two-way ANOVA and the Student-Newman-Keuls test (p<0.05). The 1% NaF+9% HMP gel promoted significantly lower enamel wear for ERO compared to the other groups, being statistically lower than 1% NaF and Placebo for ERO+ABR. Similarly, the lowest values of integrated lesion area were found for 1% NaF+9% HMP and 2% NaF, respectively, for ERO and ERO+ABR. The addition of HMP to the 1% NaF gel promoted greater protective effect against ERO and ERO+ABR compared to the 1% NaF gel, achieving similar protective levels to those seen for the 2% NaF gel. Gel containing 1% NaF+9% HMP showed a high anti-erosive potential, being a safer alternative when compared to a conventional 2% NaF gel.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)