849 resultados para Cytokines -- metabolism
Resumo:
Fatty acids, fibre, carotenoids and tocopherols in relation to glucose metabolism in subjects at high risk for type 2 diabetes a cross-sectional analysis Type 2 diabetes (T2D) is a heterogeneous disorder of carbohydrate, lipid and protein metabolism, resulting from genetics, environmental influences and interactions between these. The disease is characterized by insulin resistance, β-cell dysfunction, hepatic glucose overproduction and disordered fat mobilization and storage. The literature on associations between dietary factors and glucose metabolism is inconsistent. One factor behind the discrepant results may be genetic heterogeneity of study populations. Data on nutrient-gene interactions in relation to glucose metabolism are scarce. Thus, investigating high-risk populations and exploring nutrient-gene interactions are essential for improving the understanding of T2D aetiology. Ideally, this information could help to develop prevention programmes that take into account the genetic predisposition to the disease. In this study, associations between measures of glucose metabolism predicting T2D and fatty acids, antioxidative nutrients and fibre were examined in a high-risk population, i.e., in non-diabetic relatives of affected patients. Interactions between the PPARG Pro12Ala polymorphism and fatty acids on glucose metabolism were taken into consideration. This common polymorphism plays an important role in the regulation of glucose metabolism. The inverse associations observed between dietary fibre and insulin resistance are consistent with the prevailing recommendations urging increased intake of fibre to prevent T2D. Beneficial associations observed between the intake of carotenoids and glucose levels stress that a high consumption of vegetables, fruits and berries rich in carotenoids might also play a role in the prevention of T2D. Whether tocopherols have an independent association with glucose metabolism remains questionable. Observed interactions between fatty acids and glucose metabolism suggest that a high intake of palmitic acid is associated with high fasting glucose levels mainly in female Ala allele carriers. Furthermore, the PPARG Pro12Ala polymorphism may modify the metabolic response to dietary marine fat. The beneficial associations of high intake of marine n 3 fatty acids with insulin resistance and glucose levels may be restricted to carriers of the Ala allele. The findings pertain to subjects with a family history of T2D, and the cross-sectional nature of the study precludes inferences about causality. Results nevertheless show that associations of dietary factors with glucose metabolism may be modulated by the genetic makeup of an individual. Additional research is warranted to elucidate the role of probably numerous nutrient-gene interactions, some of which may be sex-specific, in the aetiology of T2D.
Resumo:
Dietary habits have changed during the past decades towards an increasing consumption of processed foods, which has notably increased not only total dietary phosphorus (P) intake, but also intake of P from phosphate additives. While the intake of calcium (Ca) in many Western countries remains below recommended levels (800 mg/d), the usual daily P intake in a typical Western diet exceeds by 2- to 3-fold the dietary guidelines (600 mg/d). The effects of high P intake in healthy humans have been investigated seldom. In this thesis healthy 20- to 43-year-old women were studied. In the first controlled study (n = 14), we examined the effects of P doses, and in a cross-sectional study (n = 147) the associations of habitual P intakes with Ca and bone metabolism. In this same cross-sectional study, we also investigated whether differences exist between dietary P originating from natural P sources and phosphate additives. The second controlled study (n = 12) investigated whether by increasing the Ca intake, the effects of a high P intake could be reduced. The associations of habitual dietary calcium-to-phosphorus ratios (Ca:P ratio) with Ca and bone metabolism were determined in a cross-sectional study design (n = 147). In the controlled study, the oral intake of P doses (495, 745, 1245 and 1995 mg/d) with a low Ca intake (250 mg/d) increased serum parathyroid hormone (S-PTH) concentration in a dose-dependent manner. In addition, the highest P dose decreased serum ionized calcium (S-iCa) concentration and bone formation and increased bone resorption. In the second controlled study with a dietary P intake of 1850 mg/d, by increasing the Ca intake from 480 mg/d to 1080 mg/d and then to 1680 mg/d, the S-PTH concentration decreased, the S-iCa concentration increased and bone resorption decreased dose-dependently. However, not even the highest Ca intake could counteract the effect of high dietary P on bone formation, as indicated by unchanged bone formation activity. In the cross-sectional studies, a higher habitual dietary P intake (>1650 mg/d) was associated with lower S-iCa and higher S-PTH concentrations. The consumption of phosphate additive-containing foods was associated with a higher S-PTH concentration. Moreover, habitual low dietary Ca:P ratios (≤0.50, molar ratio) were associated with higher S-PTH concentrations and 24-h urinary Ca excretions, suggesting that low dietary Ca:P ratios may interfere with homeostasis of Ca metabolism and increase bone resorption. In summary, excessive dietary P intake in healthy Finnish women seems to be detrimental to Ca and bone metabolism, especially when dietary Ca intake is low. The results indicate that by increasing dietary Ca intake to the recommended level, the negative effects of high P intake could be diminished, but not totally prevented. These findings imply that phosphate additives may be more harmful than natural P. Thus, reduction of an excessively high dietary P intake is also beneficial for healthy individuals.
Resumo:
Kangaroos ferment forage material in an enlarged forestomach analogous to the rumen, but in contrast to ruminants, they produce little or no methane. The objective of this study was to identify the dominant organisms and pathways involved in hydrogenotrophy in the kangaroo forestomach, with the broader aim of understanding how these processes are able to predominate over methanogenesis. Stable isotope analysis of fermentation end products and RNA stable isotope probing (RNA-SIP) were used to investigate the organisms and biochemical pathways involved in the metabolism of hydrogen and carbon dioxide in the kangaroo forestomach. Our results clearly demonstrate that the activity of bacterial reductive acetogens is a key factor in the reduced methane output of kangaroos. In in vitro fermentations, the microbial community of the kangaroo foregut produced very little methane, but produced a significantly greater proportion of acetate derived from carbon dioxide than the microbial community of the bovine rumen. A bacterial operational taxonomic unit closely related to the known reductive acetogen Blautia coccoides was found to be associated with carbon dioxide and hydrogen metabolism in the kangaroo foregut. Other bacterial taxa including members of the genera Prevotella, Oscillibacter and Streptococcus that have not previously been reported as containing hydrogenotrophic organisms were also significantly associated with metabolism of hydrogen and carbon dioxide in the kangaroo forestomach.The ISME Journal advance online publication, 13 March 2014; doi:10.1038/ismej.2014.25.
Resumo:
The effects of heat stress on dairy production can be separated into 2 distinct causes: those effects that are mediated by the reduced voluntary feed intake associated with heat stress, and the direct physiological and metabolic effects of heat stress. To distinguish between these, and identify their effect on milk protein and casein concentration, mid-lactation Holstein-Friesian cows (n = 24) were housed in temperature-controlled chambers and either subjected to heat stress HS; temperature-humidity index (THI) ~78 or kept in a THI < 70 environment and pair-fed with heat-stressed cows (TN-R) for 7 d. A control group of cows was kept in a THI < 70 environment with ad libitum feeding (TN-AL). A subsequent recovery period (7 d), with THI < 70 and ad libitum feeding followed. Intake accounted for only part of the effects of heat stress. Heat stress reduced the milk protein concentration, casein number, and casein concentration and increased the urea concentration in milk beyond the effects of restriction of intake. Under HS, the proportion in total casein of αS1-casein increased and the proportion of αS2-casein decreased. Because no effect of HS on milk fat or lactose concentration was found, these effects appeared to be the result of specific downregulation of mammary protein synthesis, and not a general reduction in mammary activity. No residual effects were found of HS or TN-R on milk production or composition after THI < 70 and ad libitum intake were restored. Heat-stressed cows had elevated blood concentrations of urea and Ca, compared with TN-R and TN-AL. Cows in TN-R had higher serum nonesterified fatty acid concentrations than cows in HS. It was proposed that HS and TN-R cows may mobilize different tissues as endogenous sources of energy.
Resumo:
Abstract is not available.
Resumo:
Some of the enzyme systems in the formation of p-hydroxybenzoate from tyrosine have been studied in the rat liver in vitro. The conversion of p-hydroxycinnamate into p-hydroxybenzoate, which was found in rat liver mitochondria showed a number of differences when compared with the b-oxidation of fatty acids. Studies with p-hydroxy[U-14C]cinnamate indicated that 14CO2 was released during the formation of p-hydroxybenzoate. The formation of p-hydroxycinnamate from tyrosine of p-hydroxyphenyl-lactate could not be demonstrated in vitro. The interconversion of p-hydroxycinnamate and p-hydroxyphenylpropionate was demonstrated in rat liver mitochondria.
Resumo:
The nucleotide coenzyme cytidine-5-diphospho-choline is highly folded. The CMP-5 parts of the molecules in the crystal structure are strongly linked by metal ligation and hydrogen bonds leaving the phosphoryl-choline residues relatively free. Cytidine-5-diphosphoric acid exists as a zwitterion with N31 protonated. The P−O bond lengths from the anhydride bridging oxygen in the pyrophosphate are significantly different.
Resumo:
A new analogue of vitamin A, viz., retinoic acid anhydride was prepared, for the first time, by the action of thionyl chloride on retinoic acid in benzene containing pyridine. The amhydride was charcterised by its chromatographic properties, elemental analysis, ultraviolet absorption, infrared and nuclear magnetic resonance spectral characteristics. The compound could be readily hydrolysed to retinoic acid both by acid and alkali treatments and reduced by lithium aluminium hydride to vitamin A alcohol (retinol). The spectral changes with antimony trichloride reagent were similar to those observed for retinoic acid. The metabolism of retinoic acid anhydride was found to be similar to that of retinoic acic. When administered either orally or intraperitoneally, the compound promotes growth in vitamin A-deficient rats. Time-course experiments revealed that retinoic acid anhydride is converted into retinoic acid by non-enzymatic hydrolysis and thereby exerts its biological activity. The biopotency of the anhydride was found to be nearly the same as that of the acid. A new method of preparing esters of retinoic acid employing retinoic acid anhydride as an intermediate, has been described.
Resumo:
A fungus capable of degrading DL-phenylalanine was isolated from the soil and identified as Aspergillus niger. It was found to metabolize DL-phenylalanine by a new pathway involving 4-hydroxymandelic acid. D-Amino acid oxidase and L-phenylalanine: 2-oxoglutaric acid aminotransferase initiated the degradation of D- and L-phenylalanine, respectively. Both phenylpyruvate oxidase and phenylpyruvate decarboxylase activities could be demonstrated in the cell-free system. Phenylacetate hydroxylase, which required reduced nicotinamide adenine dinucleotide phosphate, converted phenylacetic acid to 2- and 4-hydroxyphenylacetic acid. Although 4-hydroxyphenylacetate was converted to 4-hydroxymandelate, 2-hydroxyphenylacetate was not utilized until the onset of sporulation. During sporulation, it was converted rapidly into homogentisate and oxidized to ring-cleaved products. 4-Hydroxymandelate was degraded to protocatechuate via
Resumo:
Microorganisms capable of degrading dl-synephrine were isolated from soil of Citrus gardens by enrichment culture, with dl-synephrine as the sole source of carbon and nitrogen. An organism which appears to be an arthrobacter, but which cannot be identified with any of the presently recognized species was predominant in these isolates. It was found to metabolize synephrine by a pathway involving p-hydroxyphenylacetaldehyde, p-hydroxyphenylacetic acid, and 3,4-dihydroxyphenylacetic acid as intermediates. Some of the enzymes of this pathway were demonstrated in cell-free extracts. An aromatic oxygenase, which could also be readily obtained in a cell-free system, was found to degrade 3,4-dihydroxyphenylacetic acid by meta cleavage.
Resumo:
Preliminary studies on the metabolism of mandelic acid by Neurospora crassa reveal the operation of a pathway for its degradation which involves benzoyl formic acid, benzaldehyde, benzoic acid, 4-hydroxybenzoic acid, and protocatechuic acid as the intermediates. This pathway is different from that followed by bacterial systems and is the same as that observed in Aspergillus niger.
Resumo:
Administration of human chorionic gonadotrophin (HCG) or ovine LH to immature rats primed with pregnant mare serum gonadotrophin (PMSG) stimulated the rate of synthesis of polyadenylic acid (poly A)-rich RNA in the ovaries. The rate of total RNA synthesis was not affected significantly by hormone treatment, whereas protein synthesis was enhanced. The increase in the rate of synthesis of poly(A)-rich RNA in the ovaries could be inferred as induction of messenger RNA synthesis after the hormone treatment. The poly(A)-rich nature of the isolated RNA was established by oligo(dT)–cellulose chromatography, binding to Millipore filter disks and hydridization with [3H]polyuridylic acid. The level of cyclic AMP in the ovaries of such rats was also raised after administration of LH, the increase coincided with the increase in the rate of synthesis of poly(A)-rich RNA. The implications of these results are discussed in the light of the biochemical basis of luteinization and the action of LH.
Resumo:
1. (1) The relative abilities of the various cell fractions of rat and chicken liver to oxidize and reduce retinal and 8'- and 12'-apo-β-carotenal were investigated and it has been shown that, while retinal is exclusively oxidized by the soluble fraction, the apocarotenals are mostly oxidized by the particulate fractions of the homogenate. 2. (2) Addition of NAD+ or NADP+ markedly activated the oxidation of the apocarotenals, but not of retinal by the particulate fractions. 3. (3) Considerable amounts of retinal and 8'-, 10'- and 12'-apo-β-carotenal were isolated from the intestine of chickens fed β-carotene and these apocarotenoids were conclusively identified. 4. (4) Significant amounts of 8'-, 10'- and 12'-apo-β-carotenoic acids were isolated from the intestine of rats given 8'-apo-β-carotenal and these apocarotenoic acids were also conclusively identified. 5. (5) In the light of these observations it is suggested that during conversion to vitamin A, the β-carotene molecule is simultaneously attacked by the dioxygenase at several double bonds, the primary attack being at the central double bond and a tentative scheme for the mechanism of conversion is proposed.
Resumo:
Thiobacillus novellus was able to grow with oxalate, formate, formamide, and methanol as sole sources of carbon and energy. Extensive growth on methanol required yeast extract or vitamins. Glyoxylate carboligase was detected in extracts of oxalate-grown cells. Ribulose bisphosphate carboxylase was found in extracts of cells grown on formate, formamide, and thiosulfate. These data indicate that oxalate is utilized heterotrophically in the glycerate pathway, and formate and formamide are utilized autotrophically in the ribulose bisphosphate pathway. Nicotinamide adenine dinucleotide-linked formate dehydrogenase was present in extracts of oxalate-, formate-, formamide-, and methanol-grown cells but was absent in thiosulfate- and acetate-grown cells.