937 resultados para Cytochrome P450 Enzymes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Altern geht mit einer Reihe physiologischer Veränderungen einher. Da in höherem Lebensalter überdurchschnittlich viele Arzneistoffe eingenommen werden und häufig mehrere Erkrankungen gleichzeitig vorliegen, können Auffälligkeiten in den Arzneimittelkonzentrationen im Blut nicht nur altersbedingt, sondern auch krankheitsbedingt oder durch Arzneimittelwechselwirkungen verursacht sein.rnrnDie vorliegende Arbeit untersucht die Fragestellung, ob der Arzneimittelmetabolismus bei Alterspatenten generell, oder nur bei Patienten mit Multimorbidität und –medikation verändert ist, und in welchem Lebensalter diese Veränderungen einsetzen. Im Mittelpunkt stand dabei die Frage, ob die Aktivitäten distinkter Arzneimittel-abbauender Enzyme der Cytochrom P450-Enzym-Familie (CYP) verändert sind. Da viele Psychopharmaka nur bei Patienten im Alter zwischen 18 und 65 Jahren zugelassen sind, wurde die Hypothese geprüft, dass sich Patienten im Alter über und unter 65 Jahren in ihren Medikamentenspiegeln unterscheiden.rnrnFür die Untersuchungen wurde eine Datenbank aus Blutspiegelmessungen erstellt, die im Rahmen des pharmakotherapiebegleitenden TDM erhoben worden waren. Die Blutspiegel stammten von insgesamt 4197 Patienten, die mit Amisulprid, Aripiprazol, Citalopram, Clozapin, Donepezil, Escitalopram, Mirtazapin, Quetiapin, Risperidon, Sertralin, Venlafaxin oder Ziprasidon behandelt wurden. Die Messungen wurden ergänzt mit Angaben aus den TDM-Anforderungsscheinen bezüglich Tagesdosis, Begleitmedikamenten, Schweregrad der Erkrankung, Therapieerfolg und Verträglichkeit der Medikation. Zusätzlich wurden klinische Befunde der Leber- und Nierenfunktion einbezogen, sowie Angaben zur Berechnung des BMI. Die in vivo-CYP-Enzymaktivitäten wurden anhand von metabolischen Ratios (Serumkonzentrationen Metabolit/ Serumkonzentration Muttersubstanz) beurteilt.rnrnIm Mittel stieg der Schweregrad der Erkrankung mit dem Alter und der Therapieerfolg verschlechterte sich. Dies betraf im Einzelnen nur Patienten, die mit Amisulprid oder Clozapin behandelt worden waren. Ältere Patienten litten häufiger an Nebenwirkungen als jüngere.rnUnter Aripiprazol, Quetiapin, Sertralin und Venlafaxin erreichten Alterspatienten mit niedrigeren Tagesdosen gleiche Therapieerfolge wie jüngere Patienten.rnPatienten, die mit Clozapin oder Amisulprid behandelt wurden, zeigten im Alter schlechtere Behandlungserfolge bei gleicher (Clozapin) bzw. niedrigerer (Amisulprid) Tagesdosis.rnTherapieerfolg und mittlere Tagesdosis änderten sich bei Patienten, die Ziprasidon, Donepezil, Citalopram, Escitalopram und Mirtazapin einnahmen, nicht altersabhängig.rnrnAltersabhängige Unterschiede der Serumspiegel zeigten sich für Amisulprid, Aripiprazol, Donepezil, Mirtazapin, Desmethylmirtazapin, Quetiapin und DesmethylsertralinrnAllerdings lagen die Altersgrenzen außer bei Donepezil deutlich niedriger als die gängig angenommene, nämlich bei 35 Jahren (Aripiprazol), 70 Jahren (Donepezil), 55 Jahren (D-Sertralin), 41 Jahren (Amisulprid), 49 Jahren (Quetiapin) und 58 Jahren (Mirtazapin).rnEs bestand kein Zusammenhang zwischen dem Auftreten veränderter Serumspiegel im Alter und dem Verteilungsvolumen, der Plasmaproteinbindung oder der Eliminationshalbwertszeit der untersuchten Wirkstoffe.rnrnBei Patienten ohne Comedikation fand sich in keinem Fall eine altersabhängige Veränderung der Ratio. Es ergab sich daher kein Hinweis auf eine Veränderung der CYP-Aktivität im Alter. Die Einnahme von Comedikation nahm mit dem Alter zu, hierfür ließ sich eine Altersgrenze von 49 Jahren definieren. Unter Polytherapie wurden Veränderungen der CYP-Aktivität beobachtet.rnrnDer Einfluss veränderter Leber- oder Nierenfunktion auf die Biotransformation von Pharmaka wurde anhand von Serumspiegeln von Patienten, die mit Donepezil, Venlafaxin, Citalopram oder Escitalopram behandelt wurden, untersucht. rnBei keinem Wirkstoff wurden unter auffälligen Leber- oder Nierenparametern signifikant veränderte Serumspiegel gemessen.rnEine Abhängigkeit der Serumspiegel vom Körpergewicht wurde nur für Desmethylsertralin gefunden. Die Spiegel waren bei Patienten mit einem Body Mass Index unter 20 signifikant höher als bei Patienten mit einem Index über 20. Aufgrund der kleinen Fallgruppe und der Tatsache, dass der Serumspiegel der Muttersubstanz nicht stieg, konnte nicht zwingend von einem Alterseinfluss aufgrund der veränderten Körperzusammensetzung ausgegangen werden.rnInsgesamt ergaben sich aus den Untersuchungen Hinweise auf moderate altersabhängige Veränderungen der Pharmakokinetik. Es ließen sich allerdings keine allgemeinen Dosierempfehlungen für Alterspatienten ableiten. Es zeigte sich jedoch, dass mit altersabhängigen Veränderungen der Pharmakokinetik bereits nach dem 50. Lebensjahr zu rechnen ist. Weitere Untersuchungen sollten auch den Alterseffekt auf gastrointestinale Transporter einbeziehen, die die aktive Aufnahme von Arzneistoffen ins Blut bewerkstelligen. Unklar ist auch die Rolle des Alterns auf die Aktivität des P-Glykoproteins. rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochrome P450 oxidoreductase (POR) supplies electrons from NADPH to steroid and drug metabolizing reactions catalyzed by the cytochrome P450s located in endoplasmic reticulum. Mutations in human POR cause a wide spectrum of disease ranging from disordered steroidogenesis to sexual differentiation. Previously we and others have shown that POR mutations can lead to reduced activities of steroidogenic P450s CYP17A1, CYP19A1 and CYP21A1. Here we are reporting that mutations in the FMN binding domain of POR may reduce CYP3A4 activity, potentially influencing drug and steroid metabolism; and the loss of CYP3A4 activity may be correlated to the reduction of cytochrome b(5) by POR. Computational molecular docking experiments with a FMN free structural model of POR revealed that an external FMN could be docked in close proximity to the FAD moiety and receive electrons donated by NADPH. Using FMN supplemented assays we have demonstrated restoration of the defective POR activity in vitro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human heme oxygenase-1 (HO-1) carries out heme catabolism supported by electrons supplied from the NADPH through NADPH P450 reductase (POR, CPR). Previously we have shown that mutations in human POR cause a rare form of congenital adrenal hyperplasia. In this study, we have evaluated the effects of mutations in POR on HO-1 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified HO-1 to measure heme degradation in a coupled assay using biliverdin reductase. Here we show that mutations in POR found in patients may reduce HO-1 activity, potentially influencing heme catabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had total loss of HO-1 activity, while POR mutations A287P, C569Y and V608F lost 50-70% activity. The POR variants P228L, R316W and G413S, A503V and G504R identified as polymorphs had close to WT activity. Loss of HO-1 activity may result in increased oxidative neurotoxicity, anemia, growth retardation and iron deposition. Further examination of patients affected with POR deficiency will be required to assess the metabolic effects of reduced HO-1 activity in affected individuals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is a report on a symposium sponsored by the American Society for Pharmacology and Experimental Therapeutics and held at the Experimental Biology 2012 meeting in San Diego, California, on April 25, 2012. The symposium speakers summarized and critically evaluated our current understanding of the physiologic, pharmacological, and toxicological roles of NADPH-cytochrome P450 oxidoreductase (POR), a flavoprotein involved in electron transfer to microsomal cytochromes P450 (P450), cytochrome b(5), squalene mono-oxygenase, and heme oxygenase. Considerable insight has been derived from the development and characterization of mouse models with conditional Por deletion in particular tissues or partial suppression of POR expression in all tissues. Additional mouse models with global or conditional hepatic deletion of cytochrome b(5) are helping to clarify the P450 isoform- and substrate-specific influences of cytochrome b(5) on P450 electron transfer and catalytic function. This symposium also considered studies using siRNA to suppress POR expression in a hepatoma cell-culture model to explore the basis of the hepatic lipidosis phenotype observed in mice with conditional deletion of Por in liver. The symposium concluded with a strong translational perspective, relating the basic science of human POR structure and function to the impacts of POR genetic variation on human drug and steroid metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxin is a chemical inducer of Parkinson's disease (PD) whereas N-methylated beta-carbolines and isoquinolines are naturally occurring analogues of MPTP involved in PD. This research has studied the oxidation of MPTP by human CYP2D6 (CYP2D6*1 and CYP2D6*10 allelic variants) as well as by a mixture of cytochrome P450s-resembling HLM, and the products generated compared with those afforded by human monoamine oxidase (MAO-B). MPTP was efficiently oxidized by CYP2D6 to two main products: MPTP-OH (p-hydroxylation) and PTP (N-demethylation), with turnover numbers of 10.09 min-1 and Km of 79.36+/-3 microM (formation of MPTP-OH) and 18.95 min-1 and Km 69.6+/-2.2 microM (PTP). Small amounts of dehydrogenated toxins MPDP+ and MPP+ were also detected. CYP2D6 competed with MAO-B for the oxidation of MPTP. MPTP oxidation by MAO-B to MPDP+ and MPP+ toxins (bioactivation) was up to 3-fold higher than CYP2D6 detoxification to PTP and MPTP-OH. Several N-methylated beta-carbolines and isoquinolines were screened for N-demethylation (detoxification) that was not significantly catalyzed by CYP2D6 or the P450s mixture. In contrast, various beta-carbolines were efficiently hydroxylated to hydroxy-beta-carbolines by CYP2D6. Thus, N(2)-methyl-1,2,3,4-tetrahydro-beta-carboline (a close MPTP analog) was highly hydroxylated to 6-hydroxy-N(2)-methyl-1,2,3,4-tetrahydro-beta-carboline and a corresponding 7-hydroxy-derivative. Thus, CYP2D6 could participate in the bioactivation and/or detoxification of these neuroactive compounds by an active hydroxylation pathway. The CYP2D6*1 enzymatic variant exhibited much higher metabolism of both MPTP and N(2)-methyl-1,2,3,4-tetrahydro-beta-carboline than the CYP2D6*10 variant, highlighting the importance of CYP2D6 polymorphism in the oxidation of these toxins. Altogether, these results suggest that CYP2D6 can play an important role in the metabolic outcome of both MPTP and beta-carbolines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVE: The in vivo implication of various cytochrome P450 (CYP) isoforms and of P-glycoprotein on methadone kinetics is unclear. We aimed to thoroughly examine the genetic factors influencing methadone kinetics and response to treatment. METHODS: Genotyping for CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, ABCB1, and UGT2B7 polymorphisms was performed in 245 patients undergoing methadone maintenance treatment. To assess CYP3A activity, the patients were phenotyped with midazolam. RESULTS: The patients with lower CYP3A activity presented higher steady-state trough (R,S)-methadone plasma levels (4.3, 3.0, and 2.3 ng/mL x mg for low, medium, and high activity, respectively; P = .0002). As previously reported, CYP2B6*6/*6 carriers had significantly higher trough (S)-methadone plasma levels (P = .0001) and a trend toward higher (R)-methadone plasma levels (P = .07). CYP2D6 ultrarapid metabolizers presented lower trough (R,S)-methadone plasma levels compared with the extensive or intermediate metabolizers (2.4 and 3.3 ng/mL x mg, respectively; P = .04), whereas CYP2D6 poor metabolizer status showed no influence. ABCB1 3435TT carriers presented lower trough (R,S)-methadone plasma levels (2.7 and 3.4 ng/mL . mg for 3435TT and 3435CC carriers, respectively; P = .01). The CYP1A2, CYP2C9, CYP2C19, CYP3A5, and UGT2B7 genotypes did not influence methadone plasma levels. Only CYP2B6 displayed a stereoselectivity in its activity. CONCLUSION: In vivo, CYP3A4 and CYP2B6 are the major CYP isoforms involved in methadone metabolism, with CYP2D6 contributing to a minor extent. ABCB1 genetic polymorphisms also contribute slightly to the interindividual variability of methadone kinetics. The genetic polymorphisms of these 4 proteins had no influence on the response to treatment and only a small influence on the dose requirement of methadone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND/AIMS: Nonalcoholic steatohepatitis (NASH) and nonalcoholic fatty liver (NAFL) have a different prognosis and should be dealt with differently. The pathogenesis of NASH implicates the overexpression of cytochrome P450 2E1 (CYP2E1). We investigated whether the noninvasive determination of CYP2E1 activity could replace a liver biopsy in order to differentiate NASH from NAFL. METHOD: Forty patients referred for suspicion of NASH underwent liver biopsy. In these patients, CYP2E1 activity was determined noninvasively by the 6-hydroxychlorzoxazone/chlorzoxazone (CHZ) ratio (CHZ test). Expression of CYP2E1 on liver slides was assessed by immunohistochemistry, and immunostaining for smooth muscle actin was used to assess the activation of hepatic stellate cells (HSC). RESULTS: Thirty patients with NASH were compared with 10 subjects with NAFL. No statistically significant difference could be identified for the clinical and biochemical parameters between the two groups. In the histology, steatosis was more important in NASH than in NAFL (P<0.0001). There was no difference either in the activity (CHZ test) or in the expression of CYP2E1 (immunohistochemistry) between patients with NASH and patients with NAFL. The degree of HSC activation was also comparable between the two groups. A positive and significant correlation was found between the activity of CYP2E1 and body mass index (P<0.001) as well as with the degree of steatosis (P=0.008). CONCLUSION: For patients suspected to have NASH, noninvasive tests including the determination of the CYP2E1 activity are unable to distinguish them from patients with steatosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: The previously described c655G>A mutation of the human cytochrome P450 aromatase gene (P450aro, CYP19) results in aberrant splicing due to disruption of a donor splice site. To explain the phenotype of partial aromatase deficiency observed in a female patient described with this mutation, molecular consequences of the c655G>A mutation were investigated. DESIGN: To investigate whether the c655G>A mutation causes an aberrant spliced mRNA lacking exon 5 (-Ex5), P450aro RNA was analysed from the patient's lymphocytes by reverse transcription polymerase chain reaction (RT-PCR) and by splicing assays performed in Y1 cells transfected with a P450aro -Ex5 expression vector. Aromatase activity of the c655G>A mutant was predicted by three dimensional (3D) protein modelling studies and analysed in transiently transfected Y1 cells. Exon 5 might be predicted as a poorly defined exon suggesting a susceptibility to both splicing mutations and physiological alternative splicing events. Therefore, expression of the -Ex5 mRNA was also assessed as a possibly naturally occurring alternative splicing transcript in normal human steroidogenic tissues. PATIENTS: An aromatase deficient girl was born with ambiguous genitalia. Elevated serum LH, FSH and androgens, as well as cystic ovaries, were found during prepuberty. At the age of 8.4 years, spontaneous breast development and a 194.6 pmol/l serum oestradiol level was observed. RESULTS: The -Ex5 mRNA was found in lymphocytes of the P450aro deficient girl and her father, who was a carrier of the mutation. Mutant minigene expression resulted in complete exon 5 skipping. As expected from 3D protein modelling, -Ex5 cDNA expression in Y1 cells resulted in loss of P450aro activity. In addition, the -Ex5 mRNA was present in placenta, prepubertal testis and adrenal tissues. CONCLUSIONS: Alternative splicing of exon 5 of the CYP19 gene occurs in the wild type (WT) as well as in the c655G>A mutant. We speculate that for the WT it might function as a regulatory mechanism for aromatization, whereas for the mutant a relative prevalence of the shorter over the full-length protein might explain the phenotype of partial aromatase deficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P450 oxidoreductase (POR) is the obligatory flavoprotein intermediate that transfers electrons from reduced nicotinamide adenine dinucleotide phosphate (NADPH) to all microsomal cytochrome P450 enzymes. Although mouse Por gene ablation causes embryonic lethality, POR missense mutations cause disordered steroidogenesis, ambiguous genitalia, and Antley-Bixler syndrome (ABS), which has also been attributed to fibroblast growth factor receptor 2 (FGFR2) mutations. We sequenced the POR gene and FGFR2 exons 8 and 10 in 32 individuals with ABS and/or hormonal findings that suggested POR deficiency. POR and FGFR2 mutations segregated completely. Fifteen patients carried POR mutations on both alleles, 4 carried mutations on only one allele, 10 carried FGFR2 or FGFR3 mutations, and 3 patients carried no mutations. The 34 affected POR alleles included 10 with A287P (all from whites) and 7 with R457H (four Japanese, one African, two whites); 17 of the 34 alleles carried 16 "private" mutations, including 9 missense and 7 frameshift mutations. These 11 missense mutations, plus 10 others found in databases or reported elsewhere, were recreated by site-directed mutagenesis and were assessed by four assays: reduction of cytochrome c, oxidation of NADPH, support of 17alpha-hydroxylase activity, and support of 17,20 lyase using human P450c17. Assays that were based on cytochrome c, which is not a physiologic substrate for POR, correlated poorly with clinical phenotype, but assays that were based on POR's support of catalysis by P450c17--the enzyme most closely associated with the hormonal phenotype--provided an excellent genotype/phenotype correlation. Our large survey of patients with ABS shows that individuals with an ABS-like phenotype and normal steroidogenesis have FGFR mutations, whereas those with ambiguous genitalia and disordered steroidogenesis should be recognized as having a distinct new disease: POR deficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deficient activities of multiple steroidogenic enzymes have been reported without and with Antley-Bixler syndrome (ABS), but mutations of corresponding cytochrome P450 enzymes have not been found. We identified mutations in POR, encoding P450 oxidoreductase, the obligate electron donor for these enzymes, in a woman with amenorrhea and three children with ABS, even though knock-out of POR is embryonically lethal in mice. Mutations of POR also affect drug-metabolizing P450 enzymes, explaining the association of ABS with maternal fluconazole ingestion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Citrobacter rodentium is the rodent equivalent of human enteropathogenic Escherichia coli infection. This study investigated regulation of hepatic and renal cytochrome P450 (P450) mRNAs, hepatic P450 proteins, cytokines, and acute phase proteins during C. rodentium infection. Female C3H/HeOuJ (HeOu) and C3H/HeJ (HeJ) mice [which lack functional toll-like receptor 4 (TLR4)] were infected with C. rodentium by oral gavage and sacrificed 6 days later. Hepatic CYP4A10 and 4A14 mRNAs were decreased in HeOu mice (<4% of control). CYP3A11, 2C29, 4F14, and 4F15 mRNAs were reduced to 16 to 55% of control levels, whereas CYP2A5, 4F16, and 4F18 mRNAs were induced (180, 190, and 600% of control, respectively). The pattern of P450 regulation in HeJ mice was similar to that in HeOu mice for most P450s, with the exception of the TLR4 dependence of CYP4F15. Hepatic CYP2C, 3A, and 4A proteins in both groups were decreased, whereas CYP2E protein was not. Renal CYP4A10 and 4A14 mRNAs were significantly down-regulated in HeOu mice, whereas other P450s were unaffected. Most renal P450 mRNAs in infected HeJ mice were increased, notably CYP4A10, 4A14, 4F18, 2A5, and 3A13. Hepatic levels of interleukin (IL)-1beta, IL-6, and tumor necrosis factor alpha (TNFalpha) mRNAs were significantly increased in infected HeOu mice, whereas only TNFalpha mRNA was significantly increased in HeJ mice. Hepatic alpha1-acid glycoprotein was induced in both groups, whereas alpha-fibrinogen and angiotensinogen were unchanged. These data indicate that hepatic inflammation induced by C. rodentium infection is mainly TLR4-independent and suggest that hepatic P450 down-regulation in this model may be cytokine-mediated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cytochrome P450 monooxygenase system consists of NADPH- cytochrome P450 reductase (P450 reductase) and cytochromes P450, which can catalyze the oxidation of a wide variety of endogenous and exogenous compounds, including steroid hormones, fatty acids, drugs, and pollutants. The functions of this system are as diverse as the substrates. P450 reductase transfers reducing equivalents from NADPH to P450, which in turn catalyzes metabolic reactions. This enzyme system has the highest level of activity in the liver. It is also present in other tissues, including brain. The functions of this enzyme system in brain seem to include: neurotransmission, neuroendocrinology, developmental and behavioral modulation, regulation of intracellular levels of cholesterol, and potential neurotoxicity.^ In this study, we have set up the rat glioma C6 cell line as an in vitro model system to examine the expression, induction, and tissue-specific regulation of P450s and P450 reductase. Rat glioma C6 cells were treated with P450 inducers phenobarbital (PB) or benzo(a)anthracene (BA). The presence of P450 reductase and of cytochrome P450 1A1, 1A2, 2A1, 2B1/2, 2C7, 2D1-5 and 2E1 was detected by reverse transcription followed by polymerase chain reaction (RT-PCR) and confirmed by restriction digestion. The induction of P450 1A1 and 2B1/2 and P450 reductase was quantified using competitive PCR. Ten- and five-fold inductions of P450 1A and 2B mRNA after BA or PB treatments, respectively, were detected. Western blot analysis of microsomal preparations of glioma C6 cells demonstrated the presence of P450 1A, 2B and P450 reductase at the protein level. ELISAs showed that BA and PB induce P450 1A and 2B proteins 7.3- and 13.5-fold, respectively. Microsomes prepared from rat glioma C6 cells showed cytochrome P450 CO difference spectra with absorption at or near 450 nm. Microsomes prepared from rat glioma C6 cells demonstrated much higher levels of ethoxyresorufin O-deethylase (EROD) and pentoxyresorufin O-dealkylase (PROD) activity, when treated with BA or PB, respectively. These experiments provide further evidence that the rat glioma C6 cell line contains an active cytochrome P450 monooxygenase system which can be induced by P450 inducers. The mRNAs of P450 1A1 and 2B1/2 can not bind to the oligo(dT) column efficiently, indicating they have very short poly(A) tails. This finding leads us to study the tissue specific regulation of P450s at post-transcriptional level. The half lives of P450 1A1 and 2B1/2 mRNA in glioma C6 cells are only 1/10 and 1/3 of that in liver. This may partly contribute to the low expression level of P450s in glial cells. The induction of P450s by BA or PB did not change their mRNA half lives, indicating the induction may be due to transcriptional regulation. In summary of this study, we believe the presence of the cytochrome P450 monooxygenase system in glial cells of the brain may be important in chemotherapy and carcinogenesis of brain tumors. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochromes P450 are a superfamily of heme-thiolate proteins that function in a concert with another protein, cytochrome P450 reductase, as terminal oxidases of an enzymatic system catalyzing the metabolism of a variety of foreign compounds and endogenous substrates. In order to better understand P450s catalytic mechanism and substrate specificity, information about the structure of the active site is necessary. Given the lack of a crystal structure of mammalian P450, other methods have been used to elucidate the substrate recognition and binding site structure in the active center. In this project I utilized the photoaffinity labeling technique and site-directed mutagenesis approach to gain further structural insight into the active site of mammalian cytochrome P4501AI and examine the role of surface residues in the interaction of P4501A1 with the reductase. ^ Four crosslinked peptides were identified by photoaffinity labeling using diazido benzphetamine as a substrate analog. Alignment of the primary structure of cytochrome P4501A1 with that of bacterial cytochrome P450102 (the crystal structure of which is known) revealed that two of the isolated crosslinked peptides can be placed in the vicinity of heme (in the L helix region and β10-β11 sheet region of cytochrome P450102) and could be involved in substrate binding. The other two peptides were located on the surface of the protein with the label bound specifically to Lys residues that were proposed to be involved in reductase-P450 interaction. ^ Alternatively, it has been shown that some of the organic hydroperoxides can support P450 catalyzed reactions in the absence of NADPH, O2 and reductase. By means of photoaffinity labeling the cumene hydroperoxide binding region was identified. Using azidocumene as the photoaffinity label, the tripeptide T501-L502-K503 was shown to be the site where azidocumene covalently binds to P4501A1. The sequence alignment of cytochrome P4501A1 with cytochrome P450102 predicts that this region might correspond to β-sheet structure localized on the distal side of the heme ring near the I helix and the oxygen binding pocket. The role of Thr501 in the cumene hydroperoxide binding was confirmed by mutations of this residue and kinetic analysis of the effects of the mutations. ^ In addition, the role of two lysine residues, Lys271 and Lys279, in the interaction with reductase was examined by means of site-directed mutagenesis. The lysine residues were substituted with isoleucine and enzymatic activity of the wild type and the mutants were compared in reductase- and cumene hydroperoxide-supported systems. The lysine 279 residue has been shown to play a critical role in the P4501A1-reductase interaction. ^