276 resultados para Cyperus rotundus
Resumo:
Bats (Chiroptera) are generally awkward crawlers, but the common vampire bat (Desmodus rotundus) and the New Zealand short-tailed bat (Mystacina tuberculata) have independently evolved the ability to manoeuvre well on the ground. In this study we describe the kinematics of locomotion in both species, and the kinetics of locomotion in M. tuberculata. We sought to determine whether these bats move terrestrially the way other quadrupeds do, or whether they possess altogether different patterns of movement on the ground than are observed in quadrupeds that do not fly. Using high-speed video analyses of bats moving on a treadmill, we observed that both species possess symmetrical lateral-sequence gaits similar to the kinematically defined walks of a broad range of tetrapods. At high speeds, D. rotundus use an asymmetrical bounding gait that appears to converge on the bounding gaits of small terrestrial mammals, but with the roles of the forelimbs and hindlimbs reversed. This gait was not performed by M. tuberculata. Many animals that possess a single kinematic gait shift with increasing speed from a kinetic walk (where kinetic and potential energy of the centre of mass oscillate out of phase from each other) to a kinetic run (where they oscillate in phase). To determine whether the single kinematic gait of M. tuberculata meets the kinetic definition of a walk, a run, or a gait that functions as a walk at low speed and a run at high speed, we used force plates and high-speed video recordings to characterize the energetics of the centre of mass in that species. Although oscillations in kinetic and potential energy were of similar magnitudes, M. tuberculata did not use pendulum-like exchanges of energy between them to the extent that many other quadrupedal animals do, and did not transition from a kinetic walk to kinetic run with increasing speed. The gait of M. tuberculata is kinematically a walk, but kinetically run-like at all speeds.
Resumo:
Navua sedge, a member of the Cyperaceae family, is an aggressive weed of pastures in Fiji, Sri Lanka, Malay Peninsula, Vanuatu, Samoa, Solomons, and Tahiti and is now a weed of pastures and roadsides in north Queensland, Australia. Primarily restricted to areas with an annual rainfall exceeding 2500 mm, Navua sedge is capable of forming dense stands smothering many tropical pasture species. Seventeen herbicides were field tested at three sites in north Queensland, with glyphosate, halosulfuron, hexazinone, imazapic, imazapyr, or MSMA the most effective for Navua sedge control. Environmental problems such as persistence in soil, lack of selectivity and movement off-site may occur using some herbicides at the predicted LC90 control level rates. A seasonality trial using halosulfuron (97.5 g ai/ha) gave better Navua sedge control (84%) spraying March to September than spraying at other times (50%). In a frequency trial, sequential glyphosate applications (2,160 g ae/ha) every two months was more effective for continued Navua sedge control (67%) than a single application of glyphosate (36%), though loss of ground cover would occur. In a management trial, single applications of glyphosate (2,160 to 3,570 g ae/ha) using either a rope wick, ground foliar spraying or a rotary rope wick gave 59 to 73% control, while other treatments (rotary hoe (3%), slashing (-13%) or crushing (-30%)) were less effective. In a second management trial, four monthly rotary wick applications were much more effective (98%) than four monthly crushing applications (42%). An effective management plan must include the application of regular herbicide treatments to eliminate Navua sedge seed being added to the soil seed bank. Treatments that result in seed burial, for example, discing are likely to prolong seed persistence and should be avoided. The sprouting activity of vegetative propagules and root fragmentation needs to also be considered when selecting control options.
Resumo:
Cyperus iria is a weed of rice with widespread occurrence throughout the world. Because of concerns about excessive and injudicious use of herbicides, cultural weed management approaches that are safe and economical are needed. Developing such approaches will require a better understanding of weed biology and ecology, as well as of weed response to increases in crop density and nutrition. Knowledge of the effects of nitrogen (N) fertilizer on crop-weed competitive interactions could also help in the development of integrated weed management strategies. The present study was conducted in a screenhouse to determine the effects of rice planting density (0, 5, 10, and 20 plants pot−1) and N rate (0, 50, 100, and 150 kg ha−1) on the growth of C. iria. Tiller number per plant decreased by 73–88%, leaf number by 85–94%, leaf area by 85–98%, leaf biomass by 92–99%, and inflorescence biomass by 96–99% when weed plants were grown at 20 rice plants pot−1 (i.e., 400 plants m−2) compared with weed plants grown alone. All of these parameters increased when N rates were increased. On average, weed biomass increased by 118–389% and rice biomass by 121–275% with application of 50–150 kg N ha−1, compared to control. Addition of N favored weed biomass production relative to rice biomass. Increased N rates reduced the root-to-shoot weight ratio of C. iria. Rice interference reduced weed growth and biomass and completely suppressed C. iria when no N was applied at high planting densities (i.e., 20 plants pot−1). The weed showed phenotypic plasticity in response to N application, and the addition of N increased the competitive ability of the weed over rice at densities of 5 and 10 rice plants pot−1 compared with 20 plants pot−1. The results of the present study suggest that high rice density (i.e., 400 plants m−2) can help suppress C. iria growth even at high N rates (150 kg ha−1).
Resumo:
There are currently limited options for the control of the invasive tropical perennial sedge 'Cyperus aromaticus' (Ridley) Mattf. and Kukenth (Navua sedge). The potential for halosulfuron-methyl as a selective herbicide for Navua sedge control in tropical pastures was investigated by undertaking successive field and shade house experiments in North Queensland, Australia. Halosulfuron-methyl and adjuvant rates, and combinations with other herbicides, were examined to identify a herbicide regime that most effectively reduced Navua sedge. Our research indicated that combining halosulfuron- methyl with other herbicides did not improve efficacy for Navua sedge control. We also identified that low rates of halosulfuron-methyl (25 g ha-1 a.i.) were just as effective as higher rates (73 g ha-1 a.i.) at controlling the sedge, and that this control relied on the addition of the adjuvant Bonza at the recommended concentration (1% of the spray volume). Pot trials in the controlled environment of the shade house achieved total mortality under these regimes. Field trials demonstrated more variable results with reductions in Navua sedge ranging between 40-95% at 8-10 weeks after treatment. After this period (16-24 weeks after treatment), regrowth of sedge, either from newly germinated seed, or of small plants protected from initial treatment, indicated sedge populations can rapidly increase to levels similar to pre-application, depending on the location and climatic conditions. Such variable results highlight the need for concerted monitoring of pastures to identify optimal treatment times. Ideally, initial treatment should be done when the sedge is healthy and actively growing, with follow up-treatments applied when new seed heads are produced from regrowth.
Resumo:
Immunological methods have been developed for the diagnosis of Myxobolus rotundus but their use has been limited for the prevention and therapy of this serious parasitic pathogen. Phage display antibody libraries are a powerful technique for the development of antibodies to molecules of interest and have advantages over traditional hybridroma approaches. In the present study, four antigen fractions related to M. rotundus were prepared and a combined phage display single-chain antibody fragments (ScFv) library was constructed against this parasite. Preliminary analysis indicated that a combined antibody library of about 2.08 X 10(5) individual clones and high diversity was generated. After four rounds of screening (bio-panning) against soluble spore protein prepared from lysed, intact, mature M rotundus spores, a strain monoclonal phage display ScFv, termed pCAN-6H9, with better affinity, was isolated. The pCAN-6H9 gene fragment was sequenced and analysed. The specificity of pCAN-6H9 was further demonstrated by dot-blot. In competition enzyme-linked immunosorbent assay, both the original and enriched phage-displayed ScFv repertoire showed significant inhibition of mouse anti-M rotundus serum binding to coated antigen, while the inhibition rate of monoclonal pCAN-6H9 phage particles was only 11.83%.
Resumo:
Diagnosis of myxosporean Myxobolus rotundus infection was conducted by examining skin mucus from the infected crucian carp Carassius auratus auratus with a monoclonal antibody, MAb 2D12, raised previously against the parasite. A positive reaction was observed in skin mucus collected from infected fish, and spores and pre-spore stages of the parasite were identified by the MAb 2D12. It was also demonstrated that M. rotundus infection can be successfully detected by a simple method, enzyme-linked immunosorbent assay (ELISA), and that skin mucus collected from infected fish skin had a significantly higher optical density (OD) value than that from uninfected fish.
Resumo:
Dissertação mest., Gestão da água e da costa, Universidade do Algarve, 2007
Resumo:
Tiger nut (Cyperus esculentus) tuber contains oil that is high in monounsaturated fatty acids, and this oil makes up about 23% of the tuber. The study aimed at evaluating the impact of several factors and enzymatic pre-treatment on the recovery of pressed tiger nut oil. Smaller particles were more favourable for pressing. High pressure pre-treatment did not increase oil recovery but enzymatic treatment did. The highest yield obtained by enzymatic treatment prior to mechanical extraction was 33 % on a dry defatted basis, which represents a recovery of 90 % of the oil. Tiger nut oil consists mainly of oleic acid; its acid and peroxide values reflect the high stability of the oil.
Resumo:
The tiger nut tuber of the Cyperus esculentus L. plant is an unusual storage system with similar amounts of starch and lipid. The extraction of its oil employing both mechanical pressing and aqueous enzymatic extraction (AEE) methods was investigated and an examination of the resulting products was carried out. The effects of particle size and moisture content of the tuber on the yield of tiger nut oil with pressing were initially studied. Smaller particles were found to enhance oil yields while a range of moisture content was observed to favour higher oil yields. When samples were first subjected to high pressures up to 700 MPa before pressing at 38 MPa there was no increase in the oil yields. Ground samples incubated with a mixture of α- Amylase, Alcalase, and Viscozyme (a mixture of cell wall degrading enzyme) as a pre-treatment, increased oil yield by pressing and 90% of oil was recovered as a result. When aqueous enzymatic extraction was carried out on ground samples, the use of α- Amylase, Alcalase, and Celluclast independently improved extraction oil yields compared to oil extraction without enzymes by 34.5, 23.4 and 14.7% respectively. A mixture of the three enzymes further augmented the oil yield and different operational factors were individually studied for their effects on the process. These include time, total mixed enzyme concentration, linear agitation speed, and solid-liquid ratio. The largest oil yields were obtained with a solid-liquid ratio of 1:6, mixed enzyme concentration of 1% (w/w) and 6 h incubation time although the longer time allowed for the formation of an emulsion. Using stationary samples during incubation surprisingly gave the highest oil yields, and this was observed to be as a result of gravity separation occurring during agitation. Furthermore, the use of high pressure processing up to 300 MPa as a pre-treatment enhanced oil yields but additional pressure increments had a detrimental effect. The quality of oils recovered from both mechanical and aqueous enzymatic extraction based on the percentage free fatty acid (% FFA) and peroxide values (PV) all reflected the good stabilities of the oils with the highest % FFA of 1.8 and PV of 1.7. The fatty acid profiles of all oils also remained unchanged. The level of tocopherols in oils were enhanced with both enzyme aided pressing (EAP) and high pressure processing before AEE. Analysis on the residual meals revealed DP 3 and DP 4 oligosaccharides present in EAP samples but these would require further assessment on their identity and quality.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)