958 resultados para Current Catalan novel
Resumo:
Avec plus de 100000 transplantations d'organes solides (TOS) par année dans le monde, la transplantation d'organes reste actuellement l'un des meilleurs traitements disponibles pour de nombreuses maladies en phase terminale. Bien que les médicaments immunosuppresseurs couramment utilisés soient efficaces dans le contrôle de la réponse immune engendrant le rejet aigu d'une greffe, la survie du greffon à long terme ainsi que la présence d'effets secondaires indésirables restent un enjeu considérable en clinique. C'est pourquoi il est nécessaire de trouver de nouvelles approches thérapeutiques innovantes permettant de contrôler la réponse immunitaire et ainsi d'améliorer les résultats à long terme. L'utilisation des lymphocytes T régulateurs (Treg), suppresseurs naturels de la réponse inflammatoire, a fait l'objet de nombreuses études ces dix dernières années, et pourrait être considérée comme un moyen intéressant d'améliorer la tolérance immunologique de la greffe. Cependant, l'un des obstacles de l'utilisation des Treg comme agent thérapeutique est leur nombre insuffisant non seulement en conditions normales, mais en particulier lors d'une forte réponse immune avec expansion de cellules immunitaires alloréactives. En raison des limitations techniques connues pour l'induction des Treg ex-vivo ou in vitro, nous avons dédié la première partie du travail de thèse à la détermination de l'efficacité de l'induction des Treg in vivo grâce à l'utilisation d'un complexe protéique IL-2/JES6-1 (IL2c). Nous avons montré que l'expansion des Treg par IL2c permettait d'augmenter la survie du greffon sur un modèle murin de transplantation de peau avec mismatch entre le donneur et le receveur pour le complexe majeur d'histocompatibilité (CMH). De plus, nous avons vu qu'en combinant IL2c à une inhibition à court terme de la voie de co-stimulation CD40L-CD40 (anti-CD154/MRl, administré au moment de la transplantation) pour empêcher l'activation des lymphocytes T, il est possible d'induire une tolérance robuste à long terme. Finalement, nos résultats soulignent l'importance de cibler une voie de co-stimulation bien particulière. En effet, l'utilisation d'IL2c combinée au blocage de la co-stimulation CD28-B7.1/2 (CTLA-4 Ig) n'induit qu'une faible prolongation de la survie de la greffe et n'induit pas de tolérance. L'application chez l'humain des traitements induisant la tolérance dans des modèles expérimentaux murins ou de primates n'a malheureusement pas montré de résultats probants en recherche clinique ; une des principales raisons étant la présence de lymphocytes B et T mémoires provenant du systeme d immunité acquise. C est pourquoi nous avons testé si la combinaison d'IL2c et MR1 améliorait la survie de la greffe dans des souris pré¬sensibilisées. Nous avons trouvé qu'en présence de lymphocytes B et T mémoires alloréactifs, l'utilisation d'IL2c et MR1 permettait une amélioration de la survie de la greffe de peau des souris immunocompétentes mais comparé aux souris receveuses naïves, aucune tolérance n'a pu être induite. Toutefois, l'ajout d'un traitement anti-LFA-1 (permettant de bloquer la circulation des lymphocytes T activées) a permis d'améliorer de manière significative la survie de la greffe. Cependant, le rejet chronique, dû à la présence de lymphocytes B activés/mémoires et la production d'anticorps donneur-spécifiques, n'a pas pu être évité. Cibler l'activation des lymphocytes T est la stratégie immunothérapeutique prépondérente après une TOS. C'est pourquoi dans la deuxième partie de cette thèse nous nous sommes intéressés au système de signalisation d'un récepteur des lymphocytes T qui dépend de la paracaspase Malti en tant que nouvelle stratégie immunosuppressive pour le contrôle des lymphocytes T alloréactifs. Nous avons montré que bien que l'inhibition de la signalisation du lymphocyte T en aval de Malti induise une tolérance envers un greffon de peau avec incompatibilités antigéniques mineures, cela ne permet cependant qu'une régulation partielle de l'alloréponse contre des antigènes du CMH. Nous nous sommes aussi intéressés spécifiquement à l'activité protéolytique de Malti. L'inhibition constitutive de l'activité protéolytique de Malti chez les souris Malti-ki s'est révélée délétère pour l'induction de la tolérance car elle diminue la fonction des Treg et augmente l'alloréactivité des cellules Thl. Cependant, lors de l'utilisation d'un inhibiteur peptidique de l'activité protéase de Malti in vitro, il a été possible d'observer une atténuation de l'alloéactivité des lymphocytes T ainsi qu'un maintien de la population des Treg existants. Ces résultats nous laissent penser que des études plus poussées sur le rôle de la signalisation médiée par Malti seraient à envisager dans le domaine de la transplantation. En résumé, les résultats obtenus durant cette thèse nous ont permis d'élucider certains mécanismes immunologiques propres à de nouvelles stratégies thérapeutiques potentielles dont le but est d'induire une tolérance lors de TOS. De plus, ces résultats nous ont permis de souligner l'importance d'utiliser des modèles davantage physiologiques contenant, notamment en tenant compte des lymphocytes B et T mémoires alloréactifs. -- Organ transplantation remains the best available treatment for many forms of end-stage organ diseases, with over 100,000 solid organ transplantations (SOT) occurring worldwide eveiy year. Although the available immunosuppressive (IS) drugs are efficient in controlling acute immune activation and graft rejection, the off-target side effects as well as long-term graft and patient survival remain a challenge in the clinic. Hence, innovative therapeutic approaches are needed to improve long-term outcome across immunological barriers. Based on extensive experimental data obtained over the last decade, it is tempting to consider immunotherapy using Treg; the natural suppressors of overt inflammatory responses, in promoting transplantation tolerance. The first hurdle for the therapeutic use of Treg is their insufficient numbers in non- manipulated individuals, in particular when facing strong immune activation and expanding alloreactive effector cells. Because of the limitations associated with current protocols aiming at ex-vivo expansion or in vitro induction of Treg, the aim of the first part of this thesis was to determine the efficacy of direct in vivo expansion of Treg using the IL-2/JES6- 1 immune complex (IL2c). We found that whilst IL2c mediated Treg expansion alone allowed the prolonged graft survival of fìlli MHC-mismatched skin grafts, its combination with short-term CD40L-CD40 co-stimulation blockade (anti-CD 154/MR1) to inhibit T cell activation administered at the time of transplantation was able to achieve long-term robust tolerance. This study also highlighted the importance of combining Treg based therapies with the appropriate co-stimulation blockade as a combination of IL2c and CD28-B7.1/2 co- stimulation blockade (CTLA-4 Ig) only resulted in slight prolongation of graft survival but not tolerance. The translation of tolerance induction therapies modelled in rodents into non-human primates or into clinical trials has seldom been successful. One main reason being the presence of pre-existing memory T- and B-cells due to acquired immunity in humans versus laboratory animals. Hence, we tested whether IL2c+MRl could promote graft survival in pre-sensitized mice. We found that in the presence of alloreactive memory T- and B-cells, IL2c+MRl combination therapy could prolong MHC-mismatched skin graft survival in immunocompetent mice but tolerance was lost compared to the naïve recipients. The addition of anti-LF A-1 treatment, which prevents the trafficking of memory T cells worked synergistically to significantly further enhance graft survival. However, late rejection mediated by activated/memory B cells and persistent donor-specific alloantibodies still occurred. Immunotherapeutic strategies targeting the activation of T cells are the cornerstone in the current immunosuppressive management after SOT. Therefore, in the next part of this thesis we investigated the paracaspase Malti-dependent T-cell receptor signalling as a novel immunosuppressive strategy to control alloreactive T cells in transplantation. We observed that although the inhibition of Malti downstream T signalling lead to tolerance of a minor H- mismatch skin grafts, it was however not sufficient to regulate alloresponses against MHC mismatches and only prolonged graft survival. Furthermore, we investigated the potential of more selectively targeting the protease activity of Malti. Constitutive inhibition of Malti protease activity in Malti-ki mice was detrimental to tolerance induction as it diminished Treg function and increased Thl alloreactivity. However, when using a small peptide inhibitor of Malti proteolytic activity in vitro, we observed an attenuation of alloreactive T cells and sparing of the pre-existing Treg pool. This indicates that further investigation of the role of Malti signalling in the field of transplantation is required. Collectively, the findings of this thesis provide immunological mechanisms underlying novel therapeutic strategies for the promotion of tolerance in SOT. Moreover, we highlight the importance of testing tolerance induction therapies in more physiological models with pre-existing alloreactive memory T and B cells.
Resumo:
Breast cancer is the most common cancer in women, and its development is intimately related to hormonal factors, but how hormones affect breast physiology and tumorigenesis is not sufficiently known. Pregnancy elicits long-term protection from breast cancer, but during the first ten years after pregnancy, breast cancer risk is increased. In previous studies, there has been conflicting data on the role of human chorionic gonadotropin (HCG) and the functionality of its receptor in extragonadal tissues. The aim of this study was to elucidate the role of chronically elevated HCG in mouse physiology. We have created a transgenic (TG) mouse model that overexpresses HCG. HCG is similar to lutenizing hormone (LH), but is secreted almost solely by the placenta during pregnancy. HCG and LH both bind to the LH receptor (LHR). In the current study, mammary gland tumors were observed in HCG TG mice. We elucidated the role of HCG in mammary gland signalling and the effects of LHR mediated signalling in mouse mammary gland gene expression. We also studied the effects of HCG in human breast epithelial cell cultures. Several endocrine disturbances were observed in HCGβ TG female mice, resulting in precocious puberty, infertility, obesity and pituitary and mammary gland tumors. The histology of the mammary gland tumors of HCGβ TG females resembled those observed in mouse models with activated Wnt/β-catenin signalling pathway. Wnts are involved in stem cell regulation and tumorigenesis, and are hormonally regulated in the mammary gland. We observed activated β-catenin signalling and elevated expression of Wnt5b and Wnt7b in TG tumors and mammary glands. Furthermore, we discovered that HCG directly regulates the expression of Wnt5b and Wnt7b in the mouse mammary gland. Pharmacological treatment with HCG also caused upregulation of several Wnt-pathway target genes in ovariectomized wild type (WT) mice in the presence of physiological concentrations of estradiol and progesterone. In addition, differential expression of several metabolic genes was observed, suggesting that HCG affects adipocyte function or glucose metabolism. When WT mice were transplanted with LHR deficient or wild type WT mammary epithelium, differential expression of several genes affecting the Wnt-signalling pathway was observed in microarray analysis. Diminished expression of several genes associated with LHR function in other tissues, such as the ovary, was observed in mammary glands deficient of epithelial LHR. In cultured human mammary epithelial cells HCG upregulated the expression of WNT5B, WNT7B similar to mouse, suggesting that the observations found are relevant in human physiology. These studies suggest that HCG/LHR signalling affects gene expression in non-gonadal tissues, and that Wnt-signalling is regulated by HCG/LH in human and mouse mammary glands.
Resumo:
Introduction: Gamma Knife surgery (GKS) is a noninvasive neurosurgical stereotactic procedure, increasingly used as an alternative to open functional procedures. This includes the targeting of the ventrointermediate nucleus of the thalamus (e.g., Vim) for tremor. Objective: To enhance anatomic imaging for Vim GKS using high-field (7 T) MRI and Diffusion Weighted Imaging (DWI). Methods: Five young healthy subjects and two patients were scanned both on 3 and 7 T MRI. The protocol was the same in all cases, and included: T1-weighted (T1w) and DWI at 3T; susceptibility weighted images (SWI) at 7T for the visualization of thalamic subparts. SWI was further integrated into the Gamma Plan Software® (LGP, Elekta Instruments, AB, Sweden) and co-registered with 3T images. A simulation of targeting of the Vim was done using the quadrilatere of Guyot. Furthermore, a correlation with the position of the found target on SWI and also on DWI (after clustering of the different thalamic nuclei) was performed. Results: For the 5 healthy subjects, there was a good correlation between the position of the Vim on SWI, DWI and the GKS targeting. For the patients, on the pretherapeutic acquisitions, SWI helped in positioning the target. For posttherapeutic sequences, SWI supposed position of the Vim matched the corresponding contrast enhancement seen at follow-up MRI. Additionally, on the patient's follow-up T1w images, we could observe a small area of contrast-enhancement corresponding to the target used in GKS (e.g., Vim), which belongs to the Ventral-Lateral-Ventral (VLV) nuclei group. Our clustering method resulted in seven thalamic groups. Conclusion: The use of SWI provided us with a superior resolution and an improved image contrast within the central gray matter, enabling us to directly visualize the Vim. We additionally propose a novel robust method for segmenting the thalamus in seven anatomical groups based on DWI. The localization of the GKS target on the follow-up T1w images, as well as the position of the Vim on 7 T, have been used as a gold standard for the validation of VLV cluster's emplacement. The contrast enhancement corresponding to the targeted area was always localized inside the expected cluster, providing strong evidence of the VLV segmentation accuracy. The anatomical correlation between the direct visualization on 7T and the current targeting methods on 3T (e.g., quadrilatere of Guyot, histological atlases, DWI) seems to show a very good anatomical matching.
Resumo:
It is becoming increasingly clear that astrocytes play an active role in neural communications by releasing neuro-active gliotransmitters into extra-cellular spaces, where they act on neighbouring neurons in order to modulate synaptic transmission and plasticity, and affect behaviour. However, in terms of cell biology, our knowledge of the mechanisms governing the secretion of gliotransmitters is so much less detailed than our knowledge of those governing neurotransmitters that it has even been questioned whether astrocytes are capable of secreting molecules. This review critically evaluates the currently available findings concerning gliotransmitters with the aim of stimulating discussion in the field.
Resumo:
AimGlobal environmental changes challenge traditional conservation approaches based on the selection of static protected areas due to their limited ability to deal with the dynamic nature of driving forces relevant to biodiversity. The Natura 2000 network (N2000) constitutes a major milestone in biodiversity conservation in Europe, but the degree to which this static network will be able to reach its long-term conservation objectives raises concern. We assessed the changes in the effectiveness of N2000 in a Mediterranean ecosystem between 2000 and 2050 under different combinations of climate and land cover change scenarios. LocationCatalonia, Spain. MethodsPotential distribution changes of several terrestrial bird species of conservation interest included in the European Union's Birds Directive were predicted within an ensemble-forecasting framework that hierarchically integrated climate change and land cover change scenarios. Land cover changes were simulated using a spatially explicit fire-succession model that integrates fire management strategies and vegetation encroachment after the abandonment of cultivated areas as the main drivers of landscape dynamics in Mediterranean ecosystems. ResultsOur results suggest that the amount of suitable habitats for the target species will strongly decrease both inside and outside N2000. However, the effectiveness of N2000 is expected to increase in the next decades because the amount of suitable habitats is predicted to decrease less inside than outside this network. Main conclusionsSuch predictions shed light on the key role that the current N2000may play in the near future and emphasize the need for an integrative conservation perspective wherein agricultural, forest and fire management policies should be considered to effectively preserve key habitats for threatened birds in fire-prone, highly dynamic Mediterranean ecosystems. Results also show the importance of considering landscape dynamics and the synergies between different driving forces when assessing the long-term effectiveness of protected areas for biodiversity conservation.
Resumo:
Molecular Characteristics of Neuroblastoma with Special Reference to Novel Prognostic Factors and Diagnostic Applications Department of Medical Biochemistry and Genetics Annales Universitatis Turkuensis, Medica-Odontologica, 2009, Turku, Finland Painosalama Oy, Turku, Finland 2009 Background: Neuroblastoma, which is the most common and extensively studied childhood solid cancer, shows a great clinical and biological heterogeneity. Most of the neuroblastoma patients older than one year have poor prognosis despite intensive therapies. The hallmark of neuroblastoma, biological heterogeneity, has hindered the discovery of prognostic tumour markers. At present, few molecular markers, such as MYCN oncogene status, have been adopted into clinical practice. Aims: The aim of the study was to improve the current prognostic methodology of neuroblastoma, especially by taking cognizance of the biological heterogeneity of neuroblastoma. Furthermore, unravelling novel molecular characteristics which associate with neuroblastoma tumour progression and cell differentiation was an additional objective. Results: A new strictly defined selection of neuroblastoma tumour spots of highest proliferation activity, hotspots, appeared to be representative and reliable in an analysis of MYCN amplification status using a chromogenic in situ hybridization technique (CISH). Based on the hotspot tumour tissue microarray immunohistochemistry and high-resolution oligo-array-based comparative genomic hybridization, which was integrated with gene expression and in silico analysis of existing transcriptomics, a polysialylated neural cell adhesion molecule (NCAM) and poorly characterized amplicon at 12q24.31 were discovered to associate with outcome. In addition, we found that a previously considered new neuroblastoma treatment target, the mutated c-kit receptor, was not mutated in neuroblastoma samples. Conclusions: Our studies indicate polysialylated NCAM and 12q24.31 amplicon to be new molecular markers with important value in prognostic evaluation of neuroblastoma. Moreover, the presented hotspot tumour tissue microarray method together with the CISH technique of the MYCN oncogene copy number is directly applicable to clinical use. Key words: neuroblastoma, polysialic acid, neural cell adhesion molecule, MYCN, c-kit, chromogenic in situ hybridization, hotspot
Resumo:
Brugada syndrome (BrS) is a life-threatening, inherited arrhythmogenic syndrome associated with autosomal dominant mutations in SCN5A, the gene encoding the cardiac Na₊ channel alpha subunit (Naᵥ1.5). The aim of this work was to characterize the functional alterations caused by a novel SCN5A mutation, I890T, and thus establish whether this mutation is associated with BrS. The mutation was identified by direct sequencing of SCN5A from the proband’s DNA. Wild-type (WT) or I890T Naᵥ1.5 channels were heterologously expressed in human embryonic kidney cells. Sodium currents were studied using standard whole cell patch-clamp protocols and immunodetection experiments were performed using an antibody against human Naᵥ1.5 channel. A marked decrease in current density was observed in cells expressing the I890T channel (from -52.0 ± 6.5 pA/pF, n=15 to 35.9 ± 3.4 pA/pF, n = 22, at -20 mV, WT and I890T, respectively). Moreover, a positive shift of the activation curve was identified (V½ =-32.0 ± 0.3 mV, n = 18, and -27.3 ± 0.3 mV, n = 22, WT and I890T, respectively). No changes between WT and I890T currents were observed in steady-state inactivation, time course of inactivation, slow inactivation or recovery from inactivation parameters. Cell surface protein biotinylation analyses confirmed that Nav1.5 channel membrane expression levels were similar in WT and I890T cells. In summary, our data reveal that the I890T mutation, located within the pore of Nav1.5, causes an evident loss-of-function of the channel. Thus, the BrS phenotype observed in the proband is most likely due to this mutation
Resumo:
Background: Atherosclerosis begins in early life progressing from asymptomatic to symptomatic as we age. Although substantial progress has been made in identifying the determinants of atherosclerosis in middle to older age adults at increased cardiovascular risk, there is lack of data examining determinants and prediction of atherosclerosis in young adults. Aims: The current study was designed to investigate levels of cardiovascular risk factors in young adults, subclinical measures of atherosclerosis, and prediction of subclinical arterial changes with conventional risk factor measures and novel metabolic profiling of serum samples. Subjects and Methods: This thesis utilised data from the follow-ups performed in 2001 and 2007 in the Cardiovascular Risk in Young Finns study, a Finnish population-based prospective cohort study that examined 2,204 subjects who were aged 30-45 years in 2007. Subclinical atherosclerosis was studied using noninvasive ultrasound measurements of carotid intima-media thickness (IMT), carotid arterial distensibility (CDist) and brachial flow-mediated dilation (FMD). Measurements included conventional risk factors and metabolic profiling using highthroughput nuclear magnetic resonance (NMR) methods that provided data on 42 lipid markers and 16 circulating metabolites. Results: Trends in lipids were favourable between 2001 and 2007, whereas waist circumference, fasting glucose, and blood pressure levels increased. To study the stability of noninvasive ultrasound markers, 6-year tracking (the likelihood to maintain the original fractile over time) in 6 years was examined. IMT tracked more strongly than CDist and FMD. Cardiovascular risk scores (Framingham, SCORE, Finrisk, Reynolds and PROCAM) predicted subclinical atherosclerosis equally. Lipoprotein subclass testing did not improve the prediction of subclinical atherosclerosis over and above conventional risk factors. However, circulating metabolites improved risk stratification. Tyrosine and docosahexaenoic acid were found to be novel biomarkers of high IMT. Conclusions: Prediction of cardiovascular risk in young Finnish adults can be performed with any of the existing risk scores. The addition of metabonomics to risk stratification improves prediction of subclinical changes and enables more accurate targeting of prevention at an early stage.
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Prostate cancer is a heterogeneous disease affecting an increasing number of men all over the world, but particularly in the countries with the Western lifestyle. The best biomarker assay currently available for the diagnosis of the disease, the measurement of prostate specific antigen (PSA) levels from blood, lacks specificity, and even when combined with invasive tests such as digital rectal exam and prostate tissue biopsies, these methods can both miss cancers, and lead to overdiagnosis and subsequent overtreatment of cancers. Moreover, they cannot provide an accurate prognosis for the disease. Due to the high prevalence of indolent prostate cancers, the majority of men affected by prostate cancer would be able to live without any medical intervention. Their latent prostate tumors would not cause any clinical symptoms during their lifetime, but few are willing to take the risk, as currently there are no methods or biomarkers to reliably differentiate the indolent cancers from the aggressive, lethal cases that really are in need of immediate medical treatment. This doctoral work concentrated on validating 12 novel candidate genes for use as biomarkers for prostate cancer by measuring their mRNA expression levels in prostate tissue and peripheral blood of men with cancer as well as unaffected individuals. The panel of genes included the most prominent markers in the current literature: PCA3 and the fusion gene TMPRSS2-ERG, in addition to BMP-6, FGF-8b, MSMB, PSCA, SPINK1, and TRPM8; and the kallikrein-related peptidase genes 2, 3, 4, and 15. Truly quantitative reverse-transcription PCR assays were developed for each of the genes for the purpose, time-resolved fluorometry was applied in the real-time detection of the amplification products, and the gene expression data were normalized by using artificial internal RNA standards. Cancer-related, statistically significant differences in gene transcript levels were found for TMPRSS2-ERG, PCA3, and in a more modest scale, for KLK15, PSCA, and SPINK1. PCA3 RNA was found in the blood of men with metastatic prostate cancer, but not in localized cases of cancer, suggesting limitations for using this method for early cancer detection in blood. TMPRSS2-ERG mRNA transcripts were found more frequently in cancerous than in benign prostate tissues, but they were present also in 51% of the histologically benign prostate tissues of men with prostate cancer, while being absent in specimens from men without any signs of prostate cancer. PCA3 was shown to be 5.8 times overexpressed in cancerous tissue, but similarly to the fusion gene mRNA, its levels were upregulated also in the histologically benign regions of the tissue if the corresponding prostate was harboring carcinoma. These results indicate a possibility to utilize these molecular assays to assist in prostate cancer risk evaluation especially in men with initially histologically negative biopsies.
Resumo:
Mammalian spermatozoa gain their fertilizing ability during maturation in the epididymis. Proteins and lipids secreted into the epididymal lumen remodel the sperm membrane, thereby providing the structure necessary for progressive motility and oocyte interaction. In the current study, genetically modified mouse models were utilized to determine the role of novel genes and regulatory systems in the postnatal development and function of the epididymis. Ablation of the mouse β-defensin, Defb41, altered the flagellar movements of sperm and reduced the ability of sperm to bind to the oocyte in vitro. The Defb41-deficient iCre knock-in mouse model was furthermore utilized to generate Dicer1 conditional knock-out (cKO) mice. DICER1 is required for production of mature microRNAs in the regulation of gene expression by RNA interference. Dicer1 cKO gave rise to dedifferentiation of the epididymal epithelium and an altered expression of genes involved in lipid synthesis. As a consequence, the cholesterol:polyunsaturated fatty acid ratio of the Dicer1 cKO sperm membrane was increased, which resulted in membrane instability and infertility. In conclusion, the results of the Defb41 study further support the important role of β-defensin family members in sperm maturation. The regulatory role of Dicer1 was also shown to be required for epididymal development. In addition, the study is the first to show a clear connection between lipid homeostasis in the epididymis and sperm membrane integrity. Taken together, the results give important new evidence on the regulatory system guiding epididymal development and function
Resumo:
It is widely accepted that the classical constant-temperature hot-plate test is insensitive to cyclooxygenase inhibitors. In the current study, we developed a variant of the hot-plate test procedure (modified hot-plate (MHP) test) to measure inflammatory nociception in freely moving rats and mice. Following left and right hind paw stimulation with a phlogogen and vehicle, respectively, the animals were placed individually on a hot-plate surface at 51ºC and the withdrawal latency for each paw was determined simultaneously in measurements performed at 15, 60, 180, and 360 min post-challenge. Plantar stimulation of rats (250 and 500 µg/paw) and mice (125-500 µg/paw) with carrageenan led to a rapid hyperalgesic response of the ipsilateral paw that reached a plateau from 15 to 360 min after challenge. Pretreatment with indomethacin (4 mg/kg, ip) inhibited the phenomenon at all the times analyzed. Similarly, plantar stimulation of rats and mice with prostaglandin E2 (0.5 and 1 µg/paw) also resulted in rapid hyperalgesia which was first detected 15 min post-challenge. Finally, we observed that the MHP test was more sensitive than the classical Hargreaves' test, being able to detect about 4- and 10-fold lower doses of prostaglandin E2 and carrageenan, respectively. In conclusion, the MHP test is a simple and sensitive method for detecting peripheral hyperalgesia and analgesia in rats and mice. This test represents a low-cost alternative for the study of inflammatory pain in freely moving animals.
Resumo:
Growth hormone secretion is classically modulated by two hypothalamic hormones, growth hormone-releasing hormone and somatostatin. A third pathway was proposed in the last decade, which involves the growth hormone secretagogues. Ghrelin is a novel acylated peptide which is produced mainly by the stomach. It is also synthesized in the hypothalamus and is present in several other tissues. This endogenous growth hormone secretagogue was discovered by reverse pharmacology when a group of synthetic growth hormone-releasing compounds was initially produced, leading to the isolation of an orphan receptor and, finally, to its endogenous ligand. Ghrelin binds to an active receptor to increase growth hormone release and food intake. It is still not known how hypothalamic and circulating ghrelin is involved in the control of growth hormone release. Endogenous ghrelin might act to amplify the basic pattern of growth hormone secretion, optimizing somatotroph responsiveness to growth hormone-releasing hormone. It may activate multiple interdependent intracellular pathways at the somatotroph, involving protein kinase C, protein kinase A and extracellular calcium systems. However, since ghrelin has a greater ability to release growth hormone in vivo, its main site of action is the hypothalamus. In the current review we summarize the available data on the: a) discovery of this peptide, b) mechanisms of action of growth hormone secretagogues and ghrelin and possible physiological role on growth hormone modulation, and c) regulation of growth hormone release in man after intravenous administration of these peptides.
Resumo:
Prompt and accurate detection of rejection prior to pathological changes after organ transplantation is vital for monitoring rejections. Although biopsy remains the current gold standard for rejection diagnosis, it is an invasive method and cannot be repeated daily. Thus, noninvasive monitoring methods are needed. In this study, by introducing an IL-2 neutralizing monoclonal antibody (IL-2 N-mAb) and immunosuppressants into the culture with the presence of specific stimulators and activated lymphocytes, an activated lymphocyte-specific assay (ALSA) system was established to detect the specific activated lymphocytes. This assay demonstrated that the suppression in the ALSA test was closely related to the existence of specific activated lymphocytes. The ALSA test was applied to 47 heart graft recipients and the proliferation of activated lymphocytes from all rejection recipients proven by endomyocardial biopsies was found to be inhibited by spleen cells from the corresponding donors, suggesting that this suppression could reflect the existence of activated lymphocytes against donor antigens, and thus the rejection of a heart graft. The sensitivity of the ALSA test in these 47 heart graft recipients was 100%; however, the specificity was only 37.5%. It was also demonstrated that IL-2 N-mAb was indispensible, and the proper culture time courses and concentrations of stimulators were essential for the ALSA test. This preliminary study with 47 grafts revealed that the ALSA test was a promising noninvasive tool, which could be used in vitro to assist with the diagnosis of rejection post-heart transplantation.
Resumo:
Diabetes mellitus represents a serious public health problem owing to its global prevalence in the last decade. The causes of this metabolic disease include dysfunction and/or insufficient number of β cells. Existing diabetes mellitus treatments do not reverse or control the disease. Therefore, β-cell mass restoration might be a promising treatment. Several restoration approaches have been developed: inducing the proliferation of remaining insulin-producing cells, de novo islet formation from pancreatic progenitor cells (neogenesis), and converting non-β cells within the pancreas to β cells (transdifferentiation) are the most direct, simple, and least invasive ways to increase β-cell mass. However, their clinical significance is yet to be determined. Hypothetically, β cells or islet transplantation methods might be curative strategies for diabetes mellitus; however, the scarcity of donors limits the clinical application of these approaches. Thus, alternative cell sources for β-cell replacement could include embryonic stem cells, induced pluripotent stem cells, and mesenchymal stem cells. However, most differentiated cells obtained using these techniques are functionally immature and show poor glucose-stimulated insulin secretion compared with native β cells. Currently, their clinical use is still hampered by ethical issues and the risk of tumor development post transplantation. In this review, we briefly summarize the current knowledge of mouse pancreas organogenesis, morphogenesis, and maturation, including the molecular mechanisms involved. We then discuss two possible approaches of β-cell mass restoration for diabetes mellitus therapy: β-cell regeneration and β-cell replacement. We critically analyze each strategy with respect to the accessibility of the cells, potential risk to patients, and possible clinical outcomes.