971 resultados para Cucumbers Diseases and pests Biological control


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Melaleuca quinquenervia (Cav.) Blake (Myrtaceae) was imported into Florida from Australia over a century ago as a landscape plant. A favorable climate and periodic wildfires helped M. quinquenervia thrive; it now occupies about 200,000 hectares in southern Florida. A biological control (i.e., biocontrol) program against M. quinquenervia has been initiated, but not all biocontrol releases are successful. Some scientists have argued that poor biocontrol agent success may relate to genetic differences among populations of invasive weeds. I tested this premise by determining (1) the number and origins of M. quinquenervia introductions into Florida, (2) whether multiple introduction events resulted in the partitioning of Florida's M. quinquenervia populations into discrete biotypes, and (3) whether Oxyops vitiosa, an Australia snout beetle imported to control this weed, might discriminate among putative M. quinquenervia biotypes. Careful scrutiny of early horticultural catalogs and USDA plant introduction records suggested at least six distinct introduction events. Allozyme analyses indicated that the pattern of these introductions, and the subsequent redistribution of progeny, has resulted in geographic structuring of the populations in southern Florida. For example, trees on Florida's Gulf Coast had a greater effective number of alleles and exhibited greater heterozygosity than trees on the Atlantic Coast. Essential oil yields from M. quinquenervia leaves followed a similar trend; Gulf Coast trees yielded nearly twice as much oil as Atlantic Coast trees when both were grown in a common garden. These differences were partially explained by the predominance of a chemical phenotype (chemotype) very rich in the sesquiterpene (E)-nerolidol in M. quinquenervia trees from the Gulf Coast, but rich in a mixture of the monoterpene 1,8-cineole and the sesquiterpene viridiflorol in trees from the Atlantic Coast. Performance of O. vitiosa differed dramatically in laboratory studies depending on the chemotype of the foliage they were fed. Larval survivorship was four-fold greater on the (E)-nerolidol chemotype. Growth was also greater, with adult O. vitiosa gaining nearly 50% more biomass on the (E)-nerolidol plants than on the second chemotype. The results of this study thus confirmed the premise that plant genotype can affect the population dynamics of insects released as weed biocontrols. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biological control of introduced weeds in the 22 Pacific island countries and territories (PICTs) began in 1911, with the lantana seed-feeding fly introduced into Fiji and New Caledonia from Hawaii. To date, a total of 62 agents have been deliberately introduced into the PICTs to control 21 weed species in 17 countries. A further two agents have spread naturally into the region. The general impact of the 36 biocontrol agents now established in the PICTs ranges from none to complete control of their target weed(s). Fiji has been most active in weed biocontrol, releasing 30 agents against 11 weed species. Papua New Guinea, Guam, and the Federated States of Micronesia have also been very active in weed biocontrol. For some weeds such as Lantana camara, agents have been released widely, and can now be found in 15 of the 21 PICTs in which the weed occurs. However, agents for other commonly found weeds, such as Sida acuta, have been released in only a few countries in which the weed is present. There are many safe and effective biocontrol agents already in the Pacific that could be utilised more widely, and highly effective agents that have been released elsewhere in the world that could be introduced following some additional host specificity testing. This paper discusses the current status of biological control efforts against introduced weeds in the 22 PICTs and reviews options that could be considered by countries wishing to initiate weed biological control programmes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cotton industry in Australia funds biannual disease surveys conducted by plant pathologists. The objective of these surveys is to monitor the distribution and importance of key endemic pests and record the presence or absence of new or exotic diseases. Surveys have been conducted in Queensland since 2002/03, with surveillance undertaken by experienced plant pathologists. Monitoring of endemic diseases indicates the impact of farming practices on disease incidence and severity. The information collected gives direction to cotton disease research. Routine diagnostics has provided early detection of new disease problems which include 1) the identification of Nematospora coryli, a pathogenic yeast associated with seed and internal boll rot; and 2) Rotylenchulus reniformis, a plant-parasitic nematode. This finding established the need for an intensive survey of the Theodore district revealing that reniform was prevalent across the district at populations causing up to 30% yield loss. Surveys have identified an exotic defoliating strain (VCG 1A) and non-defoliating strains of Verticillium dahliae, which cause Verticillium wilt. An intensive study of the diversity of V. dahliae and the impact these strains have on cotton are underway. Results demonstrate the necessity of general multi-pest surveillance systems in broad acre agriculture in providing (1) an ongoing evaluation of current integrated disease management practices and (2) early detection for a suite of exotic pests and previously unknown pests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil Health, Soil Biology, Soilborne Diseases and Sustainable Agriculture provides readily understandable information about the bacteria, fungi, nematodes and other soil organisms that not only harm food crops but also help them take up water and nutrients and protect them from root diseases. Complete with illustrations and practical case studies, it provides growers and their consultants with holistic solutions for building an active and diverse soil biological community capable of improving soil structure, enhancing plant nutrient uptake and suppressing root pests and pathogens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regression analyses of a long series of light-trap catches at Narrabri, Australia, were used to describe the seasonal dynamics of Helicoverpa armigera (Hubner). The size of the second generation was significantly related to the size of the first generation, to winter rainfall, which had a positive effect, and to spring rainfall which had a negative effect. These variables accounted for up to 96% of the variation in size of the second generation from year to year. Rainfall and crop hosts were also important for the size of the third generation. The area and tonnage of many potential host crops were significantly correlated with winter rain. When winter rain was omitted from the analysis, the sizes of both the second and third generations could be expressed as a function of the size of the previous generation and of the areas planted to lucerne, sorghum and maize. Lucerne and maize always had positive coefficients and sorghum a negative one. We extended our analysis to catches of H. punctigera (Wallengren), which declines in abundance after the second generation. Winter rain had a positive effect on the sizes of the second and third generations, and rain in spring or early summer had a negative effect. Only the area grown to lucerne had a positive effect on abundance. Forecasts of pest levels from a few months to a few weeks in advance are discussed, along with the improved understanding of the seasonal dynamics of both species and the significance of crops in the management of insecticide resistance for H. armigera.