984 resultados para Crinoidea, Fossil
Resumo:
The majority of vegetation reconstructions from the Neotropics are derived from fossil pollen records extracted from lake sediments. However, the interpretation of these records is restricted by limited knowledge of the contemporary relationships between the vegetation and pollen rain of Neotropical ecosystems, especially for more open vegetation such as savannas. This research aims to improve the interpretation of these records by investigating the vegetation and modern pollen rain of different savanna ecosystems in Bolivia using vegetation inventories, artificial pollen traps and surface lake sediments. Two types of savanna were studied, upland savannas (cerrado), occurring on well drained soils, and seasonally-inundated savannas occurring on seasonally water-logged soils. Quantitative vegetation data are used to identify taxa that are floristically important in the different savanna types and to allow modern pollen/vegetation ratios to be calculated. Artificial pollen traps from the upland savanna site are dominated by Moraceae (35%), Poaceae (30%), Alchornea (6%) and Cecropia (4%). The two seasonally-inundated savanna sites are dominated by Moraceae (37%), Poaceae (20%), Alchornea (8%) and Cecropia (7%), and Moraceae (25%), Cyperaceae (22%), Poaceae (19%) and Cecropia (9%), respectively. The modern pollen rain of seasonally-inundated savannas from surface lake sediments is dominated by Cyperaceae (35%), Poaceae (33%), Moraceae (9%) and Asteraceae (5%). Upland and seasonally-flooded savannas were found to be only subtly distinct from each other palynologically. All sites have a high proportion of Moraceae pollen due to effective wind dispersal of this pollen type from areas of evergreen forest close to the study sites. Modern pollen/vegetation ratios show that many key woody plant taxa are absent/under-represented in the modern pollen rain (e.g., Caryocar and Tabebuia). The lower-than-expected percentages of Poaceae pollen, and the scarcity of savanna indicators, in the modern pollen rain of these ecosystems mean that savannas could potentially be overlooked in fossil pollen records without consideration of the full pollen spectrum available.
Resumo:
Accurate differentiation between tropical forest and savannah ecosystems in the fossil pollen record is hampered by the combination of: i) poor taxonomic resolution in pollen identification, and ii) the high species diversity of many lowland tropical families, i.e. with many different growth forms living in numerous environmental settings. These barriers to interpreting the fossil record hinder our understanding of the past distributions of different Neotropical ecosystems and consequently cloud our knowledge of past climatic, biodiversity and carbon storage patterns. Modern pollen studies facilitate an improved understanding of how ecosystems are represented by the pollen their plants produce and therefore aid interpretation of fossil pollen records. To understand how to differentiate ecosystems palynologically, it is essential that a consistent sampling method is used across ecosystems. However, to date, modern pollen studies from tropical South America have employed a variety of methodologies (e.g. pollen traps, moss polsters, soil samples). In this paper, we present the first modern pollen study from the Neotropics to examine the modern pollen rain from moist evergreen tropical forest (METF), semi-deciduous dry tropical forest (SDTF) and wooded savannah (cerradão) using a consistent sampling methodology (pollen traps). Pollen rain was sampled annually in September for the years 1999–2001 from within permanent vegetation study plots in, or near, the Noel Kempff Mercado National Park (NKMNP), Bolivia. Comparison of the modern pollen rain within these plots with detailed floristic inventories allowed estimates of the relative pollen productivity and dispersal for individual taxa to be made (% pollen/% vegetation or ‘p/v’). The applicability of these data to interpreting fossil records from lake sediments was then explored by comparison with pollen assemblages obtained from five lake surface samples.
Resumo:
• UV-B radiation currently represents c. 1.5% of incoming solar radiation. However, significant changes are known to have occurred in the amount of incoming radiation both on recent and on geological timescales. Until now it has not been possible to reconstruct a detailed measure of UV-B radiation beyond c. 150 yr ago. • Here, we studied the suitability of fossil Pinus spp. pollen to record variations in UV-B flux through time. In view of the large size of the grain and its long fossil history, we hypothesized that this grain could provide a good proxy for recording past variations in UV-B flux. • Two key objectives were addressed: to determine whether there was, similar to other studied species, a clear relationship between UV-B-absorbing compounds in the sporopollenin of extant pollen and the magnitude of UV-B radiation to which it had been exposed; and to determine whether these compounds could be extracted from a small enough sample size of fossil pollen to make reconstruction of a continuous record through time a realistic prospect. • Preliminary results indicate the excellent potential of this species for providing a quantitative record of UV-B through time. Using this technique, we present the first record of UV-B flux during the last 9500 yr from a site near Bergen, Norway.
Resumo:
The globular cluster HP 1 is projected on the bulge, very close to the Galactic center. The Multi-Conjugate Adaptive Optics Demonstrator on the Very Large Telescope allowed us to acquire high-resolution deep images that, combined with first epoch New Technology Telescope data, enabled us to derive accurate proper motions. The cluster and bulge fields` stellar contents were disentangled through this process and produced an unprecedented definition in color-magnitude diagrams of this cluster. The metallicity of [Fe/H] approximate to -1.0 from previous spectroscopic analysis is confirmed, which together with an extended blue horizontal branch imply an age older than the halo average. Orbit reconstruction results suggest that HP 1 is spatially confined within the bulge.
New genera of philopotine spider flies (Diptera, Acroceridae) with a key to living and fossil genera
Resumo:
In this paper we describe two new genera of philopotine Acroceridae: Schlingeriella irwini gen. et sp. n. (New Caledonia) and Quasi fisheri gen. et sp. n. (Mexico). The Baltic amber species Eulonchiella eocenica Meunier, 1912 is rediagnosed and a neotype designated based on a newly discovered specimen. We also provide a dichotomous key to the world genera of Philopotinae, both living and fossil.
Resumo:
To elucidate the relationship between forest dynamics and fire frequency pollen percentages and charcoal amounts from a 120 cm long peat core and from samples of modern pollen rain were collected along a transect. The study site in southern Brazil is characterized by a species-rich mosaic of grassland-Araucaria forest. It is of crucial importance for management strategies for conservation to understand the development and maintenance of these vegetation mosaics including their sharp forest-grassland boundaries. During the late Holocene, considerable changes occurred in the area. From Anno Domini (AD) 1360 to 1410, the area was dominated by Campos (grassland) vegetation and fire was very common. From AD 1410 to 1500, Araucaria forest expanded and fire was less frequent. From AD 1500 to 1580, Campos grassland spread and the Araucaria forest ceased its development, apparently due to the increase of fire. From AD 1580 to 1935, after a decrease in fire frequency, Araucaria forest expanded again. From AD 1935 to the present, the Araucaria forest expanded while the Campos area decreased. Fire was very rare in this period. The results indicate a strong interaction of forest expansion, forming a mosaic of Campos and Araucaria forest, and the frequency of fire during the past 600 years. A possible collapse of the indigenous population following the post-Colombian colonization in southern Brazil after about AD 1550 may have caused a great reduction of fire frequency. The introduction of cattle (probably after AD 1780) and the resulting decrease of fire frequency might be the reason for forest expansion. Fire is probably the most important factor controlling the dynamics of the forest-grassland mosaics and the formation of sharp borders between these two vegetation types. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Vegetative and fertile shoots of a shrub-like seed plant from the late Aptian Crato Formation of Brazil are described as Cearania heterophylla Kunzmann, Mohr and Bernardes-de-Oliveira, gen. nov. et sp. nov. Anatomical details of the axes, epidermal features and separate ovulate and pollen producing organs indicate the gymnospermous nature of this plant. The vascular tissue of the axes includes tracheids with bordered pits and fiber tracheids. Vegetative shoots comprising at least three branching orders bear opposite-decussately arranged ovate to lanceolate, dorsiventrally flattened, parallelodromous, rather thick leaves that vary tremendously in size. The amphistomatic leaves bear (brachy-)paracytic stomatal complexes arranged in simple longitudinal files. The ovulate structure is interpreted as a terminally attached single globular ovule/seed surrounded by at least five to six lanceolate bracts. A terminally attached pollen-cone like structure grows on a lateral leafy shoot. The unusual character combination may indicate that the fossils belong to a hitherto unknown group with affinities to ephedroid Gnetales. Sterile shoots formerly often described as Podozamites, Nageiopsis or Lilites that are at least partly congeneric with C. heterophylla Kunzmann, Mohr and Bernardes-de-Oliveira, gen. nov. et sp. nov. had a wide geographic distribution during the Early Cretaceous. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Vendoconularia triradiata Ivantsov and Fedonkin, recently described from Vendian (latest Proterozoic) strata of Russia, has been interpreted as a six-sided conulariid cnidarian. However, comparison of published illustrations of V. triradiata with Palaeozoic conulariids suggests that certain key features of the anatomy of V. triradiata should be reinterpreted. Specifically, features previously homologized with the corners of conulariid thecae may actually be homologous to the conulariid midlines. Under this new interpretation, the corners of the Vendoconularia theca were sulcate, and the midline of each face was non-sulcate and flanked by a pair of low internal carinae. This alternative set of hypotheses of homology makes the argument for a conulariid affinity for Vendoconularia stronger.
Resumo:
Biofuels and their blends with fossil fuel are important energy resources, whose production and application have been largely increased internationally. This study focuses on the evaluation of the activation energy of the thermal decomposition of three pure fuels: farnesane (renewable diesel from sugar cane), biodiesel and fossil diesel and their blends (20% farnesene and 80% of fossil diesel - 20F80D and 20% farnesane, 50% fossil diesel and 30% biodiesel - 20F50D30B). Activation energy has been determined from thermogravimetry and Model-Free Kinetics. Results showed that not only the cetane number is important to understand the behavior of the fuels regarding ignition delay, but also the profile of the activation energy versus conversion curves shows that the chemical reactions are responsible for the performance at the beginning of the process. In addition, activation energy seemed to be suitable in describing reactivity in the case of blends of renewable and fossil fuels. © 2013 Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fossil specimens of Heydrichia (?) poignantii, sp. nov. (Sporolithaceae, Sporolithales, Rhodophyta), representing the first confirmation of the genus in the fossil record, were discovered in thin sections of Albian limestones from the Riachuelo Formation, Sergipe Basin, and in thin sections of Albian -Cenomanian limestones from the Ponta do Mel Formation, Potiguar Basin in north-eastern Brazil. A detailed morphological-anatomical account of the species is provided, and its placement in Heydrichia is discussed in relation to current classification proposals. Comparisons with the four other known species of the genus, all non-fossil, show that H. poignantii is the only known species of Heydrichia in which thalli are encrusting to sparsely warty to horizontally layered with overlapping lamellate branches that commonly appear variously curved or arched, and in which thalli have sporangial complexes that become buried in the thallus. The evolutionary history of Heydrichia remains uncertain, but available data suggest that the genus may have diverged from the sporolithacean genus Sporolithon, known as early as Hauterivian times (c. 129.4-132.9 +/- 1 Ma) from Spain (and newly reported here from Switzerland), or it may have arisen from a graticulacean alga such as Graticula, dating from mid-Silurian times (c. 427-435 Ma). Current data also suggest that Heydrichia is more likely to have arrived in Brazil from Central Atlantic waters than from higher latitude South Atlantic waters. This implies that currently living species in southern Africa probably arose later from ancestors further equatorward in the South Atlantic, although confirming studies are needed. All non-fossil species of Heydrichia are known only from the southern hemisphere.
Resumo:
Biofuels and their blends with fossil fuel are important energy resources, which production and application have been largely increased internationally. This study focus on the development of a correlation between apparent activation energy (Ea) and NOx emission of the thermal decomposition of three pure fuels: farnasane (renewable diesel from sugar cane), biodiesel and fossil diesel and their blends. Apparent Activation energy was determined by using thermogravimetry and Model-Free Kinetics. NOx emission was obtained from the European Stationary Cycle (ESC) with OM 926LA CONAMA P7/Euro 5 engine. Results showed that there is a linear correlation between apparent activation energy and NOx emission with R2 of 0,9667 considering pure fuels and their blends which is given as: NOx = 2,2514Ea - 96,309. The average absolute error of this correlation is 2.96% with respect to the measured NOx value. The main advantage of this correlation is its capability to predict NOx emission when either a new pure fuel or a blend of fuels is proposed to use in enginees.
Resumo:
Three new centric diatom species assigned to a new genus are described from Miocene lacustrine deposits of Idaho. Species of the new genus, Mesodictyon, have the areola cribrum in the middle of the loculus, strutted processes and radiating, non-fasciculated striae. The strutted processes of M. magnum (diameter 60-150 μm) have long (2-3 μm) tubular extensions. The strutted processes of M. fovis (diameter 14-80 μm) are in distinct pits near the junction of the face and mantle. The valve face of M. undulatum (diameter 10-44 μm) is weakly tangentially undulate. Preliminary evidence indicates that Mesodictyon has a wide geographic distribution and may be a useful biostratigraphic marker.