955 resultados para Cppb Gene Based Assays
Resumo:
Breast cancer is the most frequent solid tumor among women and the leading cause of cancer related death in women worldwide. The prognosis of breast cancer patients is tightly correlated with the degree of spread beyond the primary tumor. In this thesis, the aim was to identify novel regulators of tumor progression in breast cancer as well as to get insights into the molecular mechanisms of breast cancer progression and metastasis. First, the role of phospholipid remodeling genes and enzymes important for breast cancer progression was studied in breast cancer samples as well as in cultured breast cancer cells. Tumor samples displayed increased de novo synthesized fatty acids especially in aggressive breast cancer. Furthermore, RNAi mediated cell based assays implicated several target genes critical for breast cancer cell proliferation and survival. Second, the role of arachidonic acid pathway members 15-hydroxyprostaglandin dehydrogenase (HPGD) and phospholipase A2 group VII (PLA2G7) in tumorigenesis associated processes was explored in metastatic breast cancer cells. Both targets were found to contribute to epithelial-mesenchymal transition related processes. Third, a high-throughput RNAi lysate microarray screen was utilized to identify novel vimentin expression regulating genes. Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) was found to promote cellular features connected with metastatic disease, thus implicating MTHFD2 as a potential drug target to block breast cancer cell migration and invasion. Taken together, this study identified several putative targets for breast cancer therapy. In addition, these results provide novel information about the mechanisms and factors underlying breast cancer progression.
Resumo:
Lanthanides represent the chemical elements from lanthanum to lutetium. They intrinsically exhibit some very exciting photophysical properties, which can be further enhanced by incorporating the lanthanide ion into organic or inorganic sensitizing structures. A very popular approach is to conjugate the lanthanide ion to an organic chromophore structure forming lanthanide chelates. Another approach, which has quickly gained interest, is to incorporate the lanthanide ions into nanoparticle structures, thus attaining improved specific activity and binding capacity. The lanthanide-based reporters usually express strong luminescence emission, multiple narrow emission lines covering a wide wavelength range, and exceptionally long excited state lifetimes enabling timeresolved detection. Because of these properties, the lanthanide-based reporters have found widespread applications in various fields of life. This study focuses on the field of bioanalytical applications. The aim of the study was to demonstrate the utility of different lanthanide-based reporters in homogeneous Förster resonance energy transfer (FRET)-based bioaffinity assays. Several different model assays were constructed. One was a competitive bioaffinity assay that utilized energy transfer from lanthanide chelate donors to fluorescent protein acceptors. In addition to the conventional FRET phenomenon, a recently discovered non-overlapping FRET (nFRET) phenomenon was demonstrated for the first time for fluorescent proteins. The lack of spectral overlap in the nFRET mechanism provides sensitivity and versatility to energy transfer-based assays. The distance and temperature dependence of these phenomena were further studied in a DNA-hybridization assay. The distance dependence of nFRET deviated from that of FRET, and unlike FRET, nFRET demonstrated clear temperature dependence. Based on these results, a possible excitation mechanism operating in nFRET was proposed. In the study, two enzyme activity assays for caspase-3 were also constructed. One of these was a fluorescence quenching-based enzyme activity assay that utilized novel inorganic particulate reporters called upconverting phosphors (UCPs) as donors. The use of UCPs enabled the construction of a simple, rather inexpensive, and easily automated assay format that had a high throughput rate. The other enzyme activity assay took advantage of another novel reporter class, the lanthanidebinding peptides (LBPs). In this assay, energy was transferred from a LBP to a green fluorescent protein (GFP). Using the LBPs it was possible to avoid the rather laborious, often poorly repeatable, and randomly positioned chemical labeling. In most of the constructed assays, time-resolved detection was used to eliminate the interfering background signal caused by autofluorescence. The improved signal-to-background ratios resulted in increased assay sensitivity, often unobtainable in homogeneous assay formats using conventional organic fluorophores. The anti-Stokes luminescence of the UCPs, however, enabled the elimination of autofluorescence even without time-gating, thus simplifying the instrument setup. Together, the studied reporters and assay formats pave the way for increasingly sensitive, simple, and easily automated bioanalytical applications.
Resumo:
Information gained from the human genome project and improvements in compound synthesizing have increased the number of both therapeutic targets and potential lead compounds. This has evolved a need for better screening techniques to have a capacity to screen number of compound libraries against increasing amount of targets. Radioactivity based assays have been traditionally used in drug screening but the fluorescence based assays have become more popular in high throughput screening (HTS) as they avoid safety and waste problems confronted with radioactivity. In comparison to conventional fluorescence more sensitive detection is obtained with time-resolved luminescence which has increased the popularity of time-resolved fluorescence resonance energy transfer (TR-FRET) based assays. To simplify the current TR-FRET based assay concept the luminometric homogeneous single-label utilizing assay technique, Quenching Resonance Energy Transfer (QRET), was developed. The technique utilizes soluble quencher to quench non-specifically the signal of unbound fraction of lanthanide labeled ligand. One labeling procedure and fewer manipulation steps in the assay concept are saving resources. The QRET technique is suitable for both biochemical and cell-based assays as indicated in four studies:1) ligand screening study of β2 -adrenergic receptor (cell-based), 2) activation study of Gs-/Gi-protein coupled receptors by measuring intracellular concentration of cyclic adenosine monophosphate (cell-based), 3) activation study of G-protein coupled receptors by observing the binding of guanosine-5’-triphosphate (cell membranes), and 4) activation study of small GTP binding protein Ras (biochemical). Signal-to-background ratios were between 2.4 to 10 and coefficient of variation varied from 0.5 to 17% indicating their suitability to HTS use.
Resumo:
The number of molecular diagnostic assays has increased tremendously in recent years.Nucleic acid diagnostic assays have been developed, especially for the detection of human pathogenic microbes and genetic markers predisposing to certain diseases. Closed-tube methods are preferred because they are usually faster and easier to perform than heterogenous methods and in addition, target nucleic acids are commonly amplified leading to risk of contamination of the following reactions by the amplification product if the reactions are opened. The present study introduces a new closed-tube switchable complementation probes based PCR assay concept where two non-fluorescent probes form a fluorescent lanthanide chelate complex in the presence of the target DNA. In this dual-probe PCR assay method one oligonucleotide probe carries a non-fluorescent lanthanide chelate and another probe a light absorbing antenna ligand. The fluorescent lanthanide chelate complex is formed only when the non-fluorescent probes are hybridized to adjacent positions into the target DNA bringing the reporter moieties in close proximity. The complex is formed by self-assembled lanthanide chelate complementation where the antenna ligand is coordinated to the lanthanide ion captured in the chelate. The complementation probes based assays with time-resolved fluorescence measurement showed low background signal level and hence, relatively high nucleic acid detection sensitivity (low picomolar target concentration). Different lanthanide chelate structures were explored and a new cyclic seven dentate lanthanide chelate was found suitable for complementation probe method. It was also found to resist relatively high PCR reaction temperatures, which was essential for the PCR assay applications. A seven-dentate chelate with two unoccupied coordination sites must be used instead of a more stable eight- or nine-dentate chelate because the antenna ligand needs to be coordinated to the free coordination sites of the lanthanide ion. The previously used linear seven-dentate lanthanide chelate was found to be unstable in PCR conditions and hence, the new cyclic chelate was needed. The complementation probe PCR assay method showed high signal-to-background ratio up to 300 due to a low background fluorescence level and the results (threshold cycles) in real-time PCR were reached approximately 6 amplification cycles earlier compared to the commonly used FRET-based closed-tube PCR method. The suitability of the complementation probe method for different nucleic acid assay applications was studied. 1) A duplex complementation probe C. trachomatis PCR assay with a simple 10-minute urine sample preparation was developed to study suitability of the method for clinical diagnostics. The performance of the C. trachomatis assay was equal to the commercial C. trachomatis nucleic acid amplification assay containing more complex sample preparation based on DNA extraction. 2) A PCR assay for the detection of HLA-DQA1*05 allele, that is used to predict the risk of type 1 diabetes, was developed to study the performance of the method in genotyping. A simple blood sample preparation was used where the nucleic acids were released from dried blood sample punches using high temperature and alkaline reaction conditions. The complementation probe HLA-DQA1*05 PCR assay showed good genotyping performance correlating 100% with the routinely used heterogenous reference assay. 3) To study the suitability of the complementation probe method for direct measurement of the target organism, e.g., in the culture media, the complementation probes were applied to amplificationfree closed-tube bacteriophage quantification by measuring M13 bacteriophage ssDNA. A low picomolar bacteriophage concentration was detected in a rapid 20- minute assay. The assay provides a quick and reliable alternative to the commonly used and relatively unreliable UV-photometry and time-consuming culture based bacteriophage detection methods and indicates that the method could also be used for direct measurement of other micro-organisms. The complementation probe PCR method has a low background signal level leading to a high signal-to-background ratio and relatively sensitive nucleic acid detection. The method is compatible with simple sample preparation and it was shown to tolerate residues of urine, blood, bacteria and bacterial culture media. The common trend in nucleic acid diagnostics is to create easy-to-use assays suitable for rapid near patient analysis. The complementation probe PCR assays with a brief sample preparation should be relatively easy to automate and hence, would allow the development of highperformance nucleic acid amplification assays with a short overall assay time.
Resumo:
It has been demonstrated that the alpha2 chain of laminin-2 present on the surface of Schwann cells is involved in the process of attachment of Mycobacterium leprae to these cells. Searching for M. leprae laminin-binding molecules, in a previous study we isolated and characterized the cationic proteins histone-like protein (Hlp) and ribosomal proteins S4 and S5 as potential adhesins involved in M. leprae-Schwann cell interaction. Hlp was shown to bind alpha2-laminins and to greatly enhance the attachment of mycobacteria to ST88-14 Schwann cells. In the present study, we investigated the laminin-binding capacity of the ribosomal proteins S4 and S5. The genes coding for these proteins were PCR amplified and their recombinant products were shown to bind alpha2-laminins in overlay assays. However, when tested in ELISA-based assays and in adhesion assays with ST88-14 cells, in contrast to Hlp, S4 and S5 failed to bind laminin and act as adhesins. The laminin-binding property and adhesin capacity of two basic host-derived proteins were also tested, and only histones, but not cytochrome c, were able to increase bacterial attachment to ST88-14 cells. Our data suggest that the alanine/lysine-rich sequences shared by Hlp and eukaryotic H1 histones might be involved in the binding of these cationic proteins to laminin.
Resumo:
Azospirillum amazonense revealed genomic organization patterns of the nitrogen fixation genes similar to those of the distantly related species A. brasilense. Our work suggests that A. brasilense nifHDK, nifENX, fixABC operons and nifA and glnB genes may be structurally homologous to the counterpart genes of A. amazonense. This is the first analysis revealing homology between A. brasilense nif genes and the A. amazonense genome. Sequence analysis of PCR amplification products revealed similarities between the amino acid sequences of the highly conserved nifD and glnB genes of A. amazonense and related genes of A. brasilense and other bacteria. However, the A. amazonense non-coding regions (the upstream activator sequence region and the region between the nifH and nifD genes) differed from related regions of A. brasilense even in nitrogenase structural genes which are highly conserved among diazotrophic bacteria. The feasibility of the 16S ribosomal RNA gene-based PCR system for specific detection of A. amazonense was shown. Our results indicate that the PCR primers for 16S rDNA defined in this article are highly specific to A. amazonense and can distinguish this species from A. brasilense.
Resumo:
Vaccine approaches to infectious diseases are widely applied and appreciated. Amongst them, vectors based on recombinant viruses have shown great promise and play an important role in the development of new vaccines. Many viruses have been investigated for their ability to express proteins from foreign pathogens and induce specific immunological responses against these antigens in vivo. Generally, gene-based vaccines can stimulate potent humoral and cellular immune responses and viral vectors might be an effective strategy for both the delivery of antigen-encoding genes and the facilitation and enhancement of antigen presentation. In order to be utilized as a vaccine carrier, the ideal viral vector should be safe and enable efficient presentation of required pathogen-specific antigens to the immune system. It should also exhibit low intrinsic immunogenicity to allow for its re-administration in order to boost relevant specific immune responses. Furthermore, the vector system must meet criteria that enable its production on a large-scale basis. Several viral vaccine vectors have thus emerged to date, all of them having relative advantages and limits depending on the proposed application, and thus far none of them have proven to be ideal vaccine carriers. In this review we describe the potential, as well as some of the foreseeable obstacles associated with viral vaccine vectors and their use in preventive medicine.
Resumo:
Searching for effective Smad3 gene-based gene therapies for hepatic fibrosis, we constructed siRNA expression plasmids targeting the rat Smad3 gene and then delivered these plasmids into hepatic stellate cells (HSCs). The effect of siRNAs on the mRNA levels of Smad2, Smad3, Smad4, and collagens I-α1, III-α1 and IV-α1 (Colα1, Col3α1, Col4α1, respectively) was determined by RT-PCR. Eighty adult male Sprague-Dawley rats were randomly divided into three groups. Twice a week for 8 weeks, the untreated hepatic fibrosis model (N = 30) and the treated group (N = 20) were injected subcutaneously with 40% (v/v) carbon tetrachloride (CCl4)-olive oil (3 mL/kg), and the normal control group (N = 30) was injected with olive oil (3 mL/kg). In the 4th week, the treated rats were injected subcutaneously with liposome-encapsulated plasmids (150 µg/kg) into the right liver lobe under general anesthesia once every 2 weeks, and the untreated rats were injected with the same volume of buffer. At the end of the 6th and 8th weeks, liver tissue and sera were collected. Pathological changes were assessed by a semi-quantitative scoring system (SSS), and a radioimmunoassay was used to establish a serum liver fibrosis index (type III procollagen, type IV collagen, laminin, and hyaluronic acid). The mRNA expression levels of the above cited genes were reduced in the HSCs transfected with the siRNA expression plasmids. Moreover, in the treated group, fibrosis evaluated by the SSS was significantly reduced (P < 0.05) and the serum indices were greatly improved (P < 0.01). These results suggest that Smad3 siRNA expression plasmids have an anti-fibrotic effect.
Resumo:
La maladie de Crohn (MC) et la colite ulcéreuse (CU) sont des maladies inflammatoires chroniques du tube digestif qu’on regroupe sous le terme maladies inflammatoires de l’intestin (MII). Les mécanismes moléculaires menant au développement des MII ne sont pas entièrement connus, mais des études génétiques et fonctionnelles ont permis de mettre en évidence des interactions entre des prédispositions génétiques et des facteurs environnementaux - notamment la flore intestinale – qui contribuent au développement d’une dérégulation de la réponse immunitaire menant à l’inflammation de la muqueuse intestinale. Des études d’association pangénomiques et ciblées ont permis d’identifier plusieurs gènes de susceptibilité aux MII mais les estimations de la contribution de ces gènes à l’héritabilité suggèrent que plusieurs gènes restent à découvrir. Certains d’entre eux peuvent se trouver dans les régions identifiées par des études de liaison génétique. L’objectif de mon projet de doctorat était d’identifier un ou des facteurs de risque génétique dans la région chromosomale 19p (identifiée comme région de liaison IBD6) et de le/les caractériser au niveau fonctionnel. Nous avons d’abord entrepris une cartographie d’association de la région 19p. À la suite du génotypage successif de deux cohortes indépendantes, nous avons identifié un SNP intronique et quatre SNP codants dont un non-synonyme, rs8108738, tous localisés dans le gène microtubule associated serine threonine kinase gene-3 (MAST3) et associés aux MII. Peu d’information fonctionnelle sur MAST3 était disponible. Par contre MAST2, une protéine encodée par un gène de la même famille, régule l’activité du facteur de transcription inflammatoire NF-kappaB. Nous avons confirmé l’implication de MAST3 dans l’activité de NF-kappaB via un knockdown de MAST3 et des essais gène-rapporteur. Pour poursuivre la caractérisation fonctionnelle de MAST3, nous avons choisi une approche non ciblée pour étudier les effets de la variation des niveaux d’expression de MAST3 sur la cellule. C’est-à-dire que nous avons créé un 1er modèle cellulaire de surexpression du gène MAST3 dans les cellules HEK293 et analysé l’expression pangénomique endogène. La validation de l’expression génique dans un 2e modèle cellulaire de knockdown et de type cellulaire différent (THP1), nous a permis d’identifier et de contrer les effets non-spécifiques dus aux niveaux non-physiologiques. Notre étude d’expression a mené à l’identification d’un groupe de gènes dont l’expression est régulée par MAST3. Ces gènes sont majoritairement impliqués dans des fonctions immunitaires (cytokines pro-inflammatoires, régulateurs de NF-kappaB, migration cellulaire, etc.) et une forte proportion est régulée par NF-kappaB. Nous avons évalué l’importance du groupe de gènes régulés par MAST3 dans la présentation clinique des MII à travers des études d’expression dans des biopsies intestinales de patients atteints de CU. Nous avons constaté que l’expression de ces gènes est significativement supérieure dans les régions enflammées par rapport aux régions saines de la muqueuse intestinale des patients atteints de CU. Globalement, les résultats de nos études suggèrent que le facteur de risque aux MII MAST3 agit via la voie du facteur de transcription NF-kappaB pour influencer l’expression d’un groupe de gènes impliqués dans l’inflammation intestinale typique des MII. Chaque étude génétique sur les MII a le potentiel d’orienter les recherches fonctionnelles vers de nouvelles voies biologiques causales. Le dévoilement des mécanismes moléculaires sous-jacents à ces voies permet d’augmenter les connaissances sur le développement de ces maladies vers une compréhension plus complète de la pathogenèse qui permettra d’optimiser le diagnostic et le traitement de ces maladies.
Resumo:
In most bacteria, the ferric uptake regulator (Fur) is a global regulator that controls iron homeostasis and other cellular processes, such as oxidative stress defense. In this work, we apply a combination of bioinformatics, in vitro and in vivo assays to identify the Caulobacter crescentus Fur regulon. A C. crescentus fur deletion mutant showed a slow growth phenotype, and was hypersensitive to H(2)O(2) and organic peroxide. Using a position weight matrix approach, several predicted Fur-binding sites were detected in the genome of C. crescentus, located in regulatory regions of genes not only involved in iron uptake and usage but also in other functions. Selected Fur-binding sites were validated using electrophoretic mobility shift assay and DNAse I footprinting analysis. Gene expression assays revealed that genes involved in iron uptake were repressed by iron-Fur and induced under conditions of iron limitation, whereas genes encoding iron-using proteins were activated by Fur under conditions of iron sufficiency. Furthermore, several genes that are regulated via small RNAs in other bacteria were found to be directly regulated by Fur in C. crescentus. In conclusion, Fur functions as an activator and as a repressor, integrating iron metabolism and oxidative stress response in C. crescentus.
Resumo:
Pós-graduação em Patologia - FMB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pentraxina 3 (PTX3) é um componente essencial da resposta imune inata e age como receptores de reconhecimento de padrões (PPRs) reconhecendo produtos microbianos, opsonizando fungos, bactérias Gram positivas e negativas, além de apresentar a capacidade de ativar o sistema complemento. Poucos estudos na literatura mundial têm investigado a expressão de PTX3 nas complicações gestacionais associadas à invasão microbiana da cavidade amniótica e resultados conflitantes têm sido descritos. Avaliar a expressão gênica e protéica de PTX3 em membranas corioamnióticas de gestações pré-termo complicadas por Trabalho de Parto Prematuro (TPP) e bolsa íntegra ou Rotura Prematura de Membranas Pré-Termo (RPM-PT), na presença de corioamnionite histológica (CA). Foram incluídas no estudo 30 gestantes com TPP, sendo 15 na ausência e 15 na presença de corioamnionite histológica e 30 gestantes com RPM-PT, sendo 15 na ausência e 15 na presença de corioamnionite histológica. Cortes parafinizados foram encaminhados à análise histopatológica para confirmação de corioamnionite histológica. Outros fragmentos de 1cm2 das membranas foram submetidos à extração de RNA total. Após a extração do RNA, as amostras com concentração entre 0,02 e 0,2g/ L de RNA foram submetidas à obtenção de cDNA para posterior utilização na quantificação da expressão gênica de PTX3 pela técnica da PCR em tempo real empregando-se o Sistema TaqMan® Gene Expression Assays. Fragmentos das mesmas amostras incluídas no estudo foram utilizados para verificar a expressão da proteína PTX-3 através da técnica de Western Blotting. Dentre as 60 membranas corioamnióticas incluídas no estudo, 56 (93,3%) expressaram PTX-3. Não houve diferença estatisticamente significativa na expressão de mRNA de PTX-3 (p=0,137) entre os grupos: RPM-PT na presença de CA (Md: 0.355; 0.11-1.03), RPM-PT na...(Resumo completo, clicar acesso eletrônico abaixo)
Resumo:
Corioamnionite é definida como inflamação das membranas corioamnióticas, sendo que tal inflamação resulta geralmente de infecção bacteriana do líquido amniótico, das membranas fetais e da placenta. O sistema imune inato constitui a primeira linha de defesa do hospedeiro contra patógenos e nesse sentido os receptores Toll-like (TLR) são importantes reguladores dessa resposta inespecífica. Entretanto, a expressão desses receptores nas membranas corioamnióticas de gestações complicadas por corioamnionite não está bem estabelecida. Investigar a expressão de receptores Toll-like -2 e -4 em membranas corioamnióticas de gestações complicadas por corioamnionite. Foram incluídas no estudo 48 membranas corioamnióticas, coletadas no Serviço de Obstetrícia do Hospital das Clínicas da Faculdade de Medicina de Botucatu, UNESP, no período de janeiro a novembro de 2008, de gestações pré-termo e de termo, incluindo gestantes com rotura prematura de membranas pré-termo (RPM-PT), trabalho de parto pré-termo (TPP) além de gestações de termo (GT). Fragmentos das membranas corioamnióticas foram encaminhados à análise histopatológica para confirmação de corioamnionite histológica. Outros fragmentos de 1cm2 das membranas foram acondicionados em RNA later® e foram submetidos à extração de RNA total. Após a extração do RNA, as amostras com concentração entre 0,02 e 0,2μg/ μL de RNA foram submetidas à obtenção de cDNA para posterior utilização na quantificação da expressão de TRL-2 e TLR-4 pela técnica da PCR em tempo real empregando-se o sistema TaqMan® Gene Expression Assays. Dentre as 24 membranas corioamnióticas com presença de corioamnionite, 41,7% foram obtidas de... (Resumo completo, clicar acesso eletrônico abaixo)