933 resultados para Covariance matrices


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies of C2 carbonaceous chondrite matrices using high resolu­tion transmission electron microscopy (HRTEM)have shown that structural details of the matrix minerals can be imaged [1-4]. The Murchison and Mighei matrices contain minerals having ordered and disordered mixed-layer structures [1,3,4] in addition to chrysotile- and lizardite-type structures [2].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Bluetooth technology is being increasingly used to track vehicles throughout their trips, within urban networks and across freeway stretches. One important opportunity offered by this type of data is the measurement of Origin-Destination patterns, emerging from the aggregation and clustering of individual trips. In order to obtain accurate estimations, however, a number of issues need to be addressed, through data filtering and correction techniques. These issues mainly stem from the use of the Bluetooth technology amongst drivers, and the physical properties of the Bluetooth sensors themselves. First, not all cars are equipped with discoverable Bluetooth devices and the Bluetooth-enabled vehicles may belong to some small socio-economic groups of users. Second, the Bluetooth datasets include data from various transport modes; such as pedestrian, bicycles, cars, taxi driver, buses and trains. Third, the Bluetooth sensors may fail to detect all of the nearby Bluetooth-enabled vehicles. As a consequence, the exact journey for some vehicles may become a latent pattern that will need to be extracted from the data. Finally, sensors that are in close proximity to each other may have overlapping detection areas, thus making the task of retrieving the correct travelled path even more challenging. The aim of this paper is twofold. We first give a comprehensive overview of the aforementioned issues. Further, we propose a methodology that can be followed, in order to cleanse, correct and aggregate Bluetooth data. We postulate that the methods introduced by this paper are the first crucial steps that need to be followed in order to compute accurate Origin-Destination matrices in urban road networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To explore the characteristics of regional distribution of cancer deaths in Shandong Province with the principle components analysis. Methods The principle components analysis with co-variance matrix for age-adjusted mortality rates and percentages of 20 types of cancer in 22 counties (cities) were carried out using SAS Software. Results Over 90% of the total information could be reflected by the top 3 principle components and the first principle component alone represented more than half of the overall regional variances. The first component mainly reflected the area differences of esophageal cancer. The second component mainly reflected the area differences of lung cancer, stomach cancer and liver cancer. The value of the first principal component scores showed a clear trend that the west areas possessed higher values and the east the lower values. Based on the top two components,the 22 counties (cities) could be divided into several geographical clusters. Conclusion The overall difference of regional distribution of cancers in Shandong is dominated by several major cancers including esophageal cancer, lung cancer, stomach cancer and liver cancer. Among them,esophageal cancer makes the largest contribution. If the range of counties (cities) analyzed could be further widened, the characteristics of regional distribution of cancer mortality would be better examined. Abstract in Chinese 目的 利用主成分分析探讨山东省恶性肿瘤死亡的地区分布特征. 方法 利用SAS软件对山东省22个县市区2004~2006午的20种恶性肿瘤标化死亡率和构成比分别进行协方差矩阵主成分分析. 结果 前3个主成分就反映了总体差异90%以上的信息,其中仅第1主成分就提供了总体差异一半以上的信息.第1主成分主要反映了食管癌的地区差异,第2主成分主要反映肺癌的地区差异,兼顾胃癌和肝癌.各地区第1主成分得分呈现西高东低的趋势,根据第1和第2主成分可以将调查地区分为若干类别,表现为明显的地理聚集性. 结论 山东省各地区恶性肿瘤死亡的总体差异主要取决于少数高发肿瘤,包括食管癌、肺癌、胃癌、肝癌等,其中以食管癌地位最为突出.如能进一步扩大分析范围,可更好地查明恶性肿瘤死亡的地区特征.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Bluetooth technology is being increasingly used, among the Automated Vehicle Identification Systems, to retrieve important information about urban networks. Because the movement of Bluetooth-equipped vehicles can be monitored, throughout the network of Bluetooth sensors, this technology represents an effective means to acquire accurate time dependant Origin Destination information. In order to obtain reliable estimations, however, a number of issues need to be addressed, through data filtering and correction techniques. Some of the main challenges inherent to Bluetooth data are, first, that Bluetooth sensors may fail to detect all of the nearby Bluetooth-enabled vehicles. As a consequence, the exact journey for some vehicles may become a latent pattern that will need to be estimated. Second, sensors that are in close proximity to each other may have overlapping detection areas, thus making the task of retrieving the correct travelled path even more challenging. The aim of this paper is twofold: to give an overview of the issues inherent to the Bluetooth technology, through the analysis of the data available from the Bluetooth sensors in Brisbane; and to propose a method for retrieving the itineraries of the individual Bluetooth vehicles. We argue that estimating these latent itineraries, accurately, is a crucial step toward the retrieval of accurate dynamic Origin Destination Matrices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances suggest that encoding images through Symmetric Positive Definite (SPD) matrices and then interpreting such matrices as points on Riemannian manifolds can lead to increased classification performance. Taking into account manifold geometry is typically done via (1) embedding the manifolds in tangent spaces, or (2) embedding into Reproducing Kernel Hilbert Spaces (RKHS). While embedding into tangent spaces allows the use of existing Euclidean-based learning algorithms, manifold shape is only approximated which can cause loss of discriminatory information. The RKHS approach retains more of the manifold structure, but may require non-trivial effort to kernelise Euclidean-based learning algorithms. In contrast to the above approaches, in this paper we offer a novel solution that allows SPD matrices to be used with unmodified Euclidean-based learning algorithms, with the true manifold shape well-preserved. Specifically, we propose to project SPD matrices using a set of random projection hyperplanes over RKHS into a random projection space, which leads to representing each matrix as a vector of projection coefficients. Experiments on face recognition, person re-identification and texture classification show that the proposed approach outperforms several recent methods, such as Tensor Sparse Coding, Histogram Plus Epitome, Riemannian Locality Preserving Projection and Relational Divergence Classification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The behaviour of tumour cells depends on factors such as genetics and the tumour microenvironment. The latter plays a crucial role in normal mammary gland development and also in breast cancer initiation and progression. Breast cancer tissues tend to be highly desmoplastic and dense matrix as a pre-existing condition poses one of the highest risk factors for cancer development. However, matrix influence on tumour cell gene expression and behaviour such as cell migration is not fully elucidated. Results We generated high-density (HD) matrices that mimicked tumour collagen content of 20 mg/cm3 that were ~14-fold stiffer than low-density (LD) matrix of 1 mg/cm3. Live-cell imaging showed breast cancer cells utilizing cytoplasmic streaming and cell body contractility for migration within HD matrix. Cell migration was blocked in the presence of both the ROCK inhibitor, Y-27632, and the MMP inhibitor, GM6001, but not by the drugs individually. This suggests roles for ROCK1 and MMP in cell migration are complicated by compensatory mechanisms. ROCK1 expression and protein activity, were significantly upregulated in HD matrix but these were blocked by treatment with a histone deacetylase (HDAC) inhibitor, MS-275. In HD matrix, the inhibition of ROCK1 by MS-275 was indirect and relied upon protein synthesis and Notch1. Inhibition of Notch1 using pooled siRNA or DAPT abrogated the inhibition of ROCK1 by MS-275. Conclusion Increased matrix density elevates ROCK1 activity, which aids in cell migration via cell contractility. The upregulation of ROCK1 is epigenetically regulated in an indirect manner involving the repression of Notch1. This is demonstrated from inhibition of HDACs by MS-275, which caused an upregulation of Notch1 levels leading to blockade of ROCK1 expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In transport networks, Origin-Destination matrices (ODM) are classically estimated from road traffic counts whereas recent technologies grant also access to sample car trajectories. One example is the deployment in cities of Bluetooth scanners that measure the trajectories of Bluetooth equipped cars. Exploiting such sample trajectory information, the classical ODM estimation problem is here extended into a link-dependent ODM (LODM) one. This much larger size estimation problem is formulated here in a variational form as an inverse problem. We develop a convex optimization resolution algorithm that incorporates network constraints. We study the result of the proposed algorithm on simulated network traffic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we introduce a novel domain-invariant covariance normalization (DICN) technique to relocate both in-domain and out-domain i-vectors into a third dataset-invariant space, providing an improvement for out-domain PLDA speaker verification with a very small number of unlabelled in-domain adaptation i-vectors. By capturing the dataset variance from a global mean using both development out-domain i-vectors and limited unlabelled in-domain i-vectors, we could obtain domain- invariant representations of PLDA training data. The DICN- compensated out-domain PLDA system is shown to perform as well as in-domain PLDA training with as few as 500 unlabelled in-domain i-vectors for NIST-2010 SRE and 2000 unlabelled in-domain i-vectors for NIST-2008 SRE, and considerable relative improvement over both out-domain and in-domain PLDA development if more are available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Origin-Destination matrices (ODM) estimation can benefits of the availability of sample trajectories which can be measured thanks to recent technologies. This paper focus on the case of transport networks where traffic counts are measured by magnetic loops and sample trajectories available. An example of such network is the city of Brisbane, where Bluetooth detectors are now operating. This additional data source is used to extend the classical ODM estimation to a link-specific ODM (LODM) one using a convex optimisation resolution that incorporates networks constraints as well. The proposed algorithm is assessed on a simulated network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The numerical solution of fractional partial differential equations poses significant computational challenges in regard to efficiency as a result of the spatial nonlocality of the fractional differential operators. The dense coefficient matrices that arise from spatial discretisation of these operators mean that even one-dimensional problems can be difficult to solve using standard methods on grids comprising thousands of nodes or more. In this work we address this issue of efficiency for one-dimensional, nonlinear space-fractional reaction–diffusion equations with fractional Laplacian operators. We apply variable-order, variable-stepsize backward differentiation formulas in a Jacobian-free Newton–Krylov framework to advance the solution in time. A key advantage of this approach is the elimination of any requirement to form the dense matrix representation of the fractional Laplacian operator. We show how a banded approximation to this matrix, which can be formed and factorised efficiently, can be used as part of an effective preconditioner that accelerates convergence of the Krylov subspace iterative solver. Our approach also captures the full contribution from the nonlinear reaction term in the preconditioner, which is crucial for problems that exhibit stiff reactions. Numerical examples are presented to illustrate the overall effectiveness of the solver.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial data analysis has become more and more important in the studies of ecology and economics during the last decade. One focus of spatial data analysis is how to select predictors, variance functions and correlation functions. However, in general, the true covariance function is unknown and the working covariance structure is often misspecified. In this paper, our target is to find a good strategy to identify the best model from the candidate set using model selection criteria. This paper is to evaluate the ability of some information criteria (corrected Akaike information criterion, Bayesian information criterion (BIC) and residual information criterion (RIC)) for choosing the optimal model when the working correlation function, the working variance function and the working mean function are correct or misspecified. Simulations are carried out for small to moderate sample sizes. Four candidate covariance functions (exponential, Gaussian, Matern and rational quadratic) are used in simulation studies. With the summary in simulation results, we find that the misspecified working correlation structure can still capture some spatial correlation information in model fitting. When the sample size is large enough, BIC and RIC perform well even if the the working covariance is misspecified. Moreover, the performance of these information criteria is related to the average level of model fitting which can be indicated by the average adjusted R square ( [GRAPHICS] ), and overall RIC performs well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive a new method for determining size-transition matrices (STMs) that eliminates probabilities of negative growth and accounts for individual variability. STMs are an important part of size-structured models, which are used in the stock assessment of aquatic species. The elements of STMs represent the probability of growth from one size class to another, given a time step. The growth increment over this time step can be modelled with a variety of methods, but when a population construct is assumed for the underlying growth model, the resulting STM may contain entries that predict negative growth. To solve this problem, we use a maximum likelihood method that incorporates individual variability in the asymptotic length, relative age at tagging, and measurement error to obtain von Bertalanffy growth model parameter estimates. The statistical moments for the future length given an individual's previous length measurement and time at liberty are then derived. We moment match the true conditional distributions with skewed-normal distributions and use these to accurately estimate the elements of the STMs. The method is investigated with simulated tag-recapture data and tag-recapture data gathered from the Australian eastern king prawn (Melicertus plebejus).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate methods for data-based selection of working covariance models in the analysis of correlated data with generalized estimating equations. We study two selection criteria: Gaussian pseudolikelihood and a geodesic distance based on discrepancy between model-sensitive and model-robust regression parameter covariance estimators. The Gaussian pseudolikelihood is found in simulation to be reasonably sensitive for several response distributions and noncanonical mean-variance relations for longitudinal data. Application is also made to a clinical dataset. Assessment of adequacy of both correlation and variance models for longitudinal data should be routine in applications, and we describe open-source software supporting this practice.