975 resultados para Cousinia, Systematics, Phylogeny


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic revision of the granulatus group of the bothriurid scorpion genus Urophonius Pocock, 1893 is presented. Urophonius pizarroi, n. sp., a new species from central Chile, is described. Urophonius granulatus Pocock, 1898, Urophonius somuncura Acosta, 2003, and Urophonius tregualemuensis Cekalovic, 1981, are redescribed using modern standards. The adult males of U. somuncura and U. tregualemuensis are described for the first time. A distribution map and key to the species of the granulatus group are provided, along with a discussion of their phenology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wild-caught larvae, attributed to the lobster shrimp Arius serratus, consisting of two zoeal stages and a decapodid (megalopa), are described in detail. Parentage of larvae was ascertained based on geographic distribution of axiideans and gebiideans (= former thalassinideans) within the study area and close morphological resemblance to other congeneric larval stages. Larvae of A. serratus represent the first described 'thalassinidean' larvae from Canadian Atlantic waters and the first for Axiidae within the northwest Atlantic. Among axiidean larvae, those of A. serratus most closely resemble larvae of A. stirhynchus from the eastern Atlantic. Distinct features include the spination of the pleon that set A. serratus zoeae apart from those of most other 'thalassinideans' but that, in combination with a telson very similar to Homarus americanus, contributes to the general resemblance of A. serratus larvae to those of the American lobster. The primary distinction between these taxa is the presence of a chela on the third pereiopod in the latter that is not present in the former. In view of these appendages being prone to loss or damage, other characters that separate these taxa are listed and discussed. Given the uncertain status of some taxa within Axiidae and limited detailed information of larvae with certain parentage, difficulties in delineating the family based on larvae persist, as they do for cladistic analyses using adult morphology and molecular approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous invertebrate species form long lasting symbioses with bacteria (Buchner, 1949; Buchner, 1965). One of the most common of these bacterial symbionts is Wolbachia pipientis, which has been estimated to infect anywhere from 15–75% of all insect species (Werren et al., 1995a; West et al., 1998; Jeyaprakash and Hoy, 2000; Werren and Windsor, 2000) as well as many species of arachnids, terrestrial crustaceans and filarial nematodes (O’Neill et al., 1997a; Bandi et al., 1998). In most arthropod associations, Wolbachia act as reproductive parasites manipulating the reproduction of their hosts to enhance their own vertical transmission. There appears to be little direct fitness cost to the infected host besides the costs arising from the reproductive manipulations. However instances have been reported where Wolbachia can be either deleterious (Min and Benzer, 1997; Bouchon et al., 1998) or beneficial (Girin and Boultreau, 1995; Stolk and Stouthamer, 1995; Wade and Chang, 1995; Vavre et al., 1999b; Dedeine et al., 2001) to their hosts. Wolbachia were first described as intracellular Rickettsia-like organisms (RLOs), infecting the gonad cells of the mosquito, Culex pipiens (Hertig and Wolbach, 1924), and were later named 'Wolbachia pipientis' (Hertig, 1936). It was not until the work of Yen and Barr (Yen and Barr, 1971; Yen and Barr, 1973) that Wolbachia were implicated in causing crossing incompatibilities between different mosquito populations (Laven, 1951; Ghelelovitch, 1952). When polymerase chain reaction (PCR) diagnostics for Wolbachia became available, it became clear that this agent was both extremely widespread and also responsible for a range of different reproductive phenotypes in the different hosts it infected (O’Neill et al., 1992; Rousset et al., 1992; Stouthamer et al., 1993). The most common of these are cytoplasmic incompatibility, inducing parthenogenesis, overriding host sex-determination, and male-killing (O’Neill et al., 1997a). As of the time of this writing, more than 450 different Wolbachia strains with unique gene sequences, different phenotypes, and infecting different hosts have been deposited in GenBank and the Wolbachia host database (http://www.wolbachia.sols. uq.edu.au).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endosymbiotic bacteria of the genus Wolbachia are widespread among arthropods and can induce cytoplasmic incompatibility, thelytokous parthenogenesis, male-killing or feminization in their hosts. Here, we report phylogenetic relationships of Wolbachia in tephritid fruit flies based on wsp gene sequences. We also report, for the first time, five distinct strains of Wolbachia in Bactrocera ascita sp. B. Four of the five Wolbachia strains found in this species were in the same groups as those found in other tephritid fruit flies, suggesting possible horizontal transmission of Wolbachia from other fruit flies into B. ascita sp. B. The unreliability of wsp-specific group primers demonstrated in this study suggests that these primers might be useful only for preliminary identification of Wolbachia. Final determination of group affiliation needs to be verified with wsp sequence data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wolbachia endosymbiotic bacteria are widespread in arthropods and are also present in filarial nematodes. Almost all filarial species so far examined have been found to harbor these endosymbionts. The sequences of only three genes have been published for nematode Wolbachia (i.e., the genes coding for the proteins FtsZ and catalase and for 16S rRNA). Here we present the sequences of the genes coding for the Wolbachia surface protein (WSP) from the endosymbionts of eight species of filaria. Complete gene sequences were obtained from the endosymbionts of two different species, Dirofilaria immitis and Brugia malayi. These sequences allowed us to design general primers for amplification of the wsp gene from the Wolbachia of all filarial species examined. For these species, partial WSP sequences (about 600 base pairs) were obtained with these primers. Phylogenetic analysis groups these nematode wsp sequences into a coherent cluster. Within the nematode cluster, wsp-based Wolbachia phylogeny matches a previous phylogeny obtained with ftsZ gene sequences, with a good consistency of the phylogeny of hosts (nematodes) and symbionts (Wolbachia). In addition, different individuals of the same host species (Dirofilaria immitis and Wuchereria bancrofti) show identical wsp gene sequences.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA sequences of the second internal transcribed spacer (ITS2) of ribosomal DNA (rDNA) were determined for 11 species from four genera of Didymozoinae (Indodidymozoon, Helicodidymozoon, Rhopalotrema and Neometadidymozoon) and a species of the Lecithasteridae, Lecithaster stellatus. Sequences were used to test the validity of species recognised on morphological criteria and to infer phylogenetic relationships. Sequences of the 11 didymozoids differed by 0.5% to 19%. Our phylogenetic analyses: (i) indicate that species in the genera Helicodidymozoon and Rhopalotrema are a monophyletic group; (ii) support separation of the genus Helicodidymozoon from the genera Indodidymozoon and Neometadidymozoon; and (iii) support recognition of Rhopalotrema as a genus distinct from Neometadidymozoon. We found the gonochoristic species, I. pearsoni and I. suttiei, to be genetically similar to the hermaphroditic species in the genus Indodidymozoon and found no evidence to indicate that they belong in a separate genus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined the phylogeny of ticks (Acari:Parasitiformes:Ixodida) and their closest known mite relatives (Acari:Parasitiformes:Mesostigmata and Holothyrida) using 18S rRNA sequences. In our analyses, we included sequences from 36 taxa. Sequences for 13 hard ticks (Family Ixodidae), 5 soft ticks (Family Argasidae), and 2 mesostigmatid mites were obtained from the GenBank database and we generated sequences for 15 hard ticks and 1 holothyrid mite. Ten of these tick species were endemic to Australia. Our analyses indicated that the suborder Holothyrida is more closely related to Ixodida than to Mesostigmata, the group used as outgroup in earlier molecular studies. This finding is consistent with Lehtinen's (1991) hypothesis that the Holothyrida rather than the Mesostigmata is the sister-group to the Ixodida. Within the hard ticks the genus Aponomma and thus the family Amblyomminae were paraphyletic. Taxonomic revision of these taxa is needed. The genus Amblyomma was paraphyletic without the inclusion of typical Aponomma species (Ap. latum and Ap. fimbriatum). There was a basal divergence between endemic Australian and other species in both the Metastriata and the Prostriata divisions of the hard ticks. (C) 1999 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comparison of the 16S rRNA gene sequence determined for Chitinophaga pinensis showed that this species is most closely related to Flexibacter filiformis in the Flexibacter-Bacteroides-Cytophaga phylum, These two chitinolytic bacteria, which are characterized by transformation into spherical bodies on ageing, belong to a strongly supported lineage that also includes Cytophaga arvensicola, Flavobacterium ferrugineum and Flexibacter sancti, The lineage is distinct from the microcyst-forming species Sporocytophaga myxococcoides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phylogenetic relationships among the species of Caulobacter, Asticcacaulis and Brevundimonas were studied by comparison of their 16S rDNA sequences. The analysis of almost complete sequences confirmed the early evolutionary divergence of the freshwater and marine species of Caulobacter reported previously [Stahl, D. A., Key, R,, Flesher, B, & Smit, J. (1992), J Bacteriol 174, 2193-2198]. The freshwater species formed two distinct clusters. One cluster contained the species Caulobacter bacteroides, Caulobacter crescentus, Caulobacter fusiformis and Caulobacter henricii. C, bacteroides and C, fusiformis are very closely related (sequence identity 99.8%). The second cluster was not exclusive and contained the species Caulobacter intermedius, Caulobacter subvibrioides and Caulobacter variabilis, as well as Brevundimonas diminuta and Brevundimonas vesicularis, The marine species Caulobacter halobacteroides and Caulobacter maris were very closely related, with a sequence identity of 99.7%, These two species were most closely but distantly related to the marine hyphal/budding bacteria Hyphomonas jannaschiana and Hirschia baltica, which formed a deep phylogenetic line with Rhodobacter sphaeroides and Rhodobacter capsulatus, Caulobacter leidyia is unrelated to the other species of Caulobacter and belongs to the alpha-4 subclass of the Proteobacteria, forming a distinct cluster with Asticcacaulis excentricus and Asticcacaulis biprosthecium, The taxonomic implications of the polyphyletic nature of the genus Caulobacter and the absence of a type culture for the type species of the genus, Caulobacter vibrioides, are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a consequence of the transfer of the type species Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum, the name of the genus Conglomeromonas must be changed in accordance with Rule 37a(1) of the International Code of Nomenclature of Bacteria. Consequently, it is proposed that the subspecies Conglomeromonas largomobilis subsp, parooensis be transferred to the genus Skermanella gen, nov. as the type species Skermanella parooensis gen, nov., sp, nov. This taxon belongs to an isolated subline of descent in the Azospirillum branch of the alpha-Proteobacteria. The spelling of the specific epithet of Azospirillum largomobile is corrected to Azospirillum largimobile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phylogenetic relationships among members of the family Comamonadaceae and several unclassified strains were studied by direct sequencing of their PCR-amplified 16S rRNA genes. Based on the 16S rRNA gene sequence analysis, members of the family formed a coherent group. The closest relatives are species of the Rubrivivax sub-group: Leptothrix discophora, Ideonella dechloratans and Rubrivivax gelatinosus. The genus Hydrogenophaga formed two subclusters, as did the species of Acidovorax, whereas the five species of the genus [Aquaspirillum] were polyphyletic. Comamonas acidovorans was phylogenetically distant from the type species of Comamonas, Comamonas terrigena. On the basis of this work and previous studies, Comamonas acidovorans is removed from the genus Comamonas and renamed as Delftia acidovorans gen. nov., comb, nov. Descriptions of the new genus Delftia and of the type species Delftia acidovorans, for which the type strain is ATCC 15668(T), are presented.