1000 resultados para Counting >63 µm fraction
Resumo:
Unusually well preserved Cretaceous radiolarians are observed in the subsurface sections from two drilled sites in the Weddell Sea collected during Leg 113 of the Ocean Drilling Program. Radiolarians from the lithified calcareous chalk of Hole 689B represent the first Campanian-Maestrichtian assemblage which is characterized by abundant Cromyodruppa Iconcentrica, Dictyomitra multicostata, and Protostichocapsa stocki. Abundant Pseudodictyomitra pentacolaensis and Diacanthocapsa sp. 1, on the other hand, are the main constituents of the assemblage from the latest Aptian/earliest Albian diatomite of Hole 693B. These represent the oldest and the highest-latitude reported radiolarian occurrences from the Atlantic sector of the Antarctic Ocean. The assemblages are marked by their low diversity and an absence of low- to mid-latitude zonal indices.
Resumo:
Sites 545 and 547 collectively penetrated 629 m of mid-Cretaceous strata (upper Aptian to upper Cenomanian) off central Morocco during Leg 79 of the Deep Sea Drilling Project. Site 545, at the base of the steep Mazagan Escarpment, records a virtually complete succession of hemipelagic sediments of early late Aptian to middle Cenomanian age. Minor faunal recycling occurred throughout much of the upper Aptian to middle Albian part of the sequence (Cores 55 through 41), reflecting bottom currents along the Mazagan Escarpment. This may be related to the strong upwelling regime and high surface water productivity over Site 545 during the latest Aptian through middle Albian. The upwelling system ceased rather abruptly in this area in late middle Albian time. Recycling of older strata by bottom currents also ceased in the late middle Albian and resulted in a slower average accumulation rate in the upper Albian to middle Cenomanian section of Site 545 (Cores 40 through 28). However, intervals of pebbly claystone conglomerates in Cores 40 and 34 record sporadic instability in the slope adjacent to Site 545. Site 547, located only about 15 km seaward, is situated in a small sub-basin adjacent to the basement block drilled by Site 544. It contains an expanded upper Albian to upper Cenomanian sequence as a result of the numerous conglomeratic intervals throughout much of the section. In contrast to Site 545, the conglomerates were not derived from older strata cropping out on the Mazagan Escarpment; rather, they originated penecontemporaneously from a local unstable slope. A detailed biostratigraphic framework based on planktonic foraminifers is established for the mid-Cretaceous sections of Sites 545 and 547 and a new composite zonal scheme is proposed for the early late Aptian through early late Cenomanian interval. Fifty-five species are recognized and illustrated
Resumo:
Ostracode species assemblages and stable oxygen and carbon isotope ratios of living and recent ostracodes, together with delta18O and delta13C_DIC values of host water samples, provide a first data set that characterizes a wide range of modern aquatic environments in the Laguna Cari-Laufquen (41°S, 68 - 69°W) and the Lago Cardiel area (48 - 49°S, 70 - 71°W) in Patagonia, Argentina. This data set will ultimately be used to interpret and calibrate data acquired from lake sediment cores with the goal of reconstructing past climate. Species assemblages and isotope values can be assigned to three groups; (1) springs, seeps and streams, (2) permanent ponds and lakes, and (3) ephemeral ponds and lakes. Springs, seeps and streams are characterized by Darwinula sp., Heterocypris incongruens, Eucypris fontana, Amphicypris nobilis and Ilyocypris ramirezi. Ostracode and water isotope values range between -13 and -5 per mil for oxygen, and between -15 and -3 per mil for carbon. They are the most negative of the entire sample set, reflecting ground water input with little or no evaporative enrichment. Limnocythere patagonica, Eucypris labyrinthica, Limnocythere sp. and Eucypris aff. fontana are typical species of permanent ponds and lakes. Isotope values indicate high degree of evaporation of lake waters relative to feeder springs and streams and range between -7 and +5 per mil for oxygen, and -5 and +4 per mil for carbon. Limnocythere rionegroensis is the dominant species in ephemeral ponds and lakes. These systems display the most enriched isotope values in both ostracodes and host waters, extending from -5 to +7 per mil for oxygen, and from -5 to +6 per mil for carbon. Living ostracodes show a positive offset from equilibrium values of up to 2 per mil for oxygen. Carbon-isotope values are up to 6? more negative than equilibrium values in highly productive pools. Comparison of ostracode and host water isotope signals permits assessment of the life span of the aquatic environments. Valves from dead ostracodes collected from ephemeral ponds and lakes show a wide scatter with each sample providing a snapshot of the seasonal history of the host water. The presence of the stream species Ilyocypris ramirezi and a wide range of ostracode isotope values suggest that ephemeral ponds and lakes are fed by streams during spring run-off and seasonally dry. A temporary character is also indicated by Heterocypris incongruens, a drought-resistant species that occupies most springs and seeps. In addition, Limnocythere rionegroensis has adjusted its reproduction strategies to its environment. Whereas only females were collected in fresh host waters, males were found in ephemeral ponds and lakes with higher solute content. Sexual reproduction seems to be the more successful reproduction strategy in high and variable salinities and seasonal droughts. The temporary character of the aquatic environments shows that the availability of meteoric water controls the life span of host waters and underlines the sensitivity of the area to changes in precipitation.
Resumo:
Foraminifera were examined in recent (<100 years) fine-grained glaciomarine muds from surface sediments and cores from Nordensheld Bay, Novaja Zemlja, and Hornsund and Bellsund, Spitsbergen. This study presents the first data on modern foraminifera distribution for fjord environments in Novaja Zemlja, Russia. The data are interpreted with reference to the distribution of foraminiferal near Svalbard and the Barents Sea. In Nordensheld Bay, live and dead Nonionellina labradorica and Islandiella norcrossi are most abundant in the outer fjord. Cassidulina reniforme and Allogromiina spp. dominate in the middle and inner fjord. The dominant species are dissimilar to species occurring in other areas of the Barents Sea region, with the exception of Svalbard fjords. The number of live foraminifera (24 to 122 tests/10 cm1) in outer and middle Nordensheld Bay corresponds with values known from the open Barents Sea. However, the biomass (0.03 mg/10 cm**3) is two orders of magnitude less due to smaller foraminiferal test size, which in glaciomarine sediments reflects the absence of larger species, paucity of large specimens, and high occurrence of juvenile foraminifera. The smaller size indicates an opportunistic response to environmental stress due to glacier proximity. The presence of Quinqueloculina stalkeri is diagnostic of glaciomarine environments in fjords of Novaja Zemlja and Svalbard.
Resumo:
Several widely correlatable intervals of laminated Thalassiothrix diatom mat deposits occur in Neogene sediments recovered from the eastern equatorial Pacific Ocean. The presence of laminated sediments in extensive areas of the deep open ocean floor raises fundamental questions concerning the cause of preservation of the laminations and the nature of the benthic environment during episodes of mat deposition. Traditional explanations for the preservation of laminations have centered on restriction of dissolved oxygen. Studies of benthic foraminifers through the laminated intervals show no evidence for an increase in absolute or relative abundance of species characteristic of a low oxygen environment, but rather a decrease in relative abundance of infaunal forms attesting to the impenetrability of the diatom meshwork formed by the interlocking Thalassiothrix frustules. These results support evidence from coring of the high tensile strength of the Thalassiothrix laminations suggesting that the diatom meshwork was of sufficient tensile strength and impenetrability to suppress infaunal benthic activity. Comparison of the relative abundances of foraminifers in the enclosing ôbackgroundö sediment of foraminifer nannofossil ooze and the laminated diatom oozes shows that some epifaunal species (e.g., Cibicides spp.) increase in relative abundance within the laminated sediment, whereas others (e.g., Epistominella exigua) show a marked decrease in relative abundance. Other species show more complex changes in abundance related to the occurrence of the laminated sediments, which may indicate a combination of controls that include the physical nature of the substrate and the amount of organic flux.