944 resultados para Correction Candidates
Resumo:
Whole-body (WB) planar imaging has long been one of the staple methods of dosimetry, and its quantification has been formalized by the MIRD Committee in pamphlet no 16. One of the issues not specifically addressed in the formalism occurs when the count rates reaching the detector are sufficiently high to result in camera count saturation. Camera dead-time effects have been extensively studied, but all of the developed correction methods assume static acquisitions. However, during WB planar (sweep) imaging, a variable amount of imaged activity exists in the detector's field of view as a function of time and therefore the camera saturation is time dependent. A new time-dependent algorithm was developed to correct for dead-time effects during WB planar acquisitions that accounts for relative motion between detector heads and imaged object. Static camera dead-time parameters were acquired by imaging decaying activity in a phantom and obtaining a saturation curve. Using these parameters, an iterative algorithm akin to Newton's method was developed, which takes into account the variable count rate seen by the detector as a function of time. The algorithm was tested on simulated data as well as on a whole-body scan of high activity Samarium-153 in an ellipsoid phantom. A complete set of parameters from unsaturated phantom data necessary for count rate to activity conversion was also obtained, including build-up and attenuation coefficients, in order to convert corrected count rate values to activity. The algorithm proved successful in accounting for motion- and time-dependent saturation effects in both the simulated and measured data and converged to any desired degree of precision. The clearance half-life calculated from the ellipsoid phantom data was calculated to be 45.1 h after dead-time correction and 51.4 h with no correction; the physical decay half-life of Samarium-153 is 46.3 h. Accurate WB planar dosimetry of high activities relies on successfully compensating for camera saturation which takes into account the variable activity in the field of view, i.e. time-dependent dead-time effects. The algorithm presented here accomplishes this task.
Resumo:
Voting is fundamental for democracy, however, this decisive democratic act requires quite an effort. Decision making at elections depends largely on the interest to gather information about candidates and parties, the effort to process the information at hand and the motivation to reach a vote choice. Especially in electoral systems with highly fragmented party systems and hundreds of candidates running for office, the process of decision making in the pre‐election sphere is highly demanding. In the age of information and communication technologies, new possibilities for gathering and processing such information are available. Voting Advice Applications (VAAs) provide guidance to voters prior to the act of voting and assist voters in choosing between different candidates and parties on the basis of issue congruence. Meanwhile widely used all over the world, scientific inquiry into the effect of such tools on electoral behavior is ongoing. This paper adds to the current debate by focusing on whether the popularity of candidates on the Swiss VAA smartvote eventually paid off at the 2007 Swiss federal elections and whether there is a direct link between the performance of a candidate on the tool and his or her electoral performance.
Resumo:
The quantity of interest for high-energy photon beam therapy recommended by most dosimetric protocols is the absorbed dose to water. Thus, ionization chambers are calibrated in absorbed dose to water, which is the same quantity as what is calculated by most treatment planning systems (TPS). However, when measurements are performed in a low-density medium, the presence of the ionization chamber generates a perturbation at the level of the secondary particle range. Therefore, the measured quantity is close to the absorbed dose to a volume of water equivalent to the chamber volume. This quantity is not equivalent to the dose calculated by a TPS, which is the absorbed dose to an infinitesimally small volume of water. This phenomenon can lead to an overestimation of the absorbed dose measured with an ionization chamber of up to 40% in extreme cases. In this paper, we propose a method to calculate correction factors based on the Monte Carlo simulations. These correction factors are obtained by the ratio of the absorbed dose to water in a low-density medium □D(w,Q,V1)(low) averaged over a scoring volume V₁ for a geometry where V₁ is filled with the low-density medium and the absorbed dose to water □D(w,QV2)(low) averaged over a volume V₂ for a geometry where V₂ is filled with water. In the Monte Carlo simulations, □D(w,QV2)(low) is obtained by replacing the volume of the ionization chamber by an equivalent volume of water, according to the definition of the absorbed dose to water. The method is validated in two different configurations which allowed us to study the behavior of this correction factor as a function of depth in phantom, photon beam energy, phantom density and field size.
Resumo:
The emergence of strains of Schistosoma resistant to praziquantel has drawn attention to the search for new schistosomacide drugs. Imidazolidinic derivatives have performed outstandingly against adult S. mansoni worms when evaluated in vitro. The molecular modification of imidazolidine by way of bioisosteric replacement gives rise to variations in its biological response. This study verifies the potential of substituent groups in the derivatives (Z)3-benzyl-5-(2-fluoro-benzylidene)-imidazolidine-2,4-dione NE4, 3-benzyl-5-(4-chloro-arylazo)-4-thioxo-imidazolidin -2-ona PT5, 3-benzyl-5-(3-fluoro-benzylidene)-1-methyl-2-thioxo-imidazolidin-4-one JT53; 3-benzyl-1-methyl-5-(4-methyl-benzylidene)-2-thioxo-imidazolidin-4-one JT63; 3-benzyl-1-methyl-5-(4-methoxi-benzylidene)-2-thioxo -imidazolidin-4-one JT68; 3-(4-chloro-benzyl)-1-methyl-5-(4-methoxi-benzylidene)-2-thioxo-imidazolidin-4-one JT69; 3-(4-phenyl-benzyl)-1-methyl-5-(4-methoxi-benzylidene)-2-thioxo-imidazolidin-4-one JT72 by determining the viability in vitro of adult S. mansoni worms in the presence of these derivatives. The susceptibility of the worms obtained from mice and kept in culture in the presence of different concentrations was determined by way of schistosomacide kinetic, observed every 24 h over a period of eight days. The results show that the worms were more sensitive to the PT5 derivative at a concentration of 58 µM which killed 100% of the worms after 24 h of contact, also giving rise to alterations in the tegument surface of the worms with the formation of bubbles and peeling. These observations suggest a strong electronic contribution of the arylazo grouping in the biological response.
Resumo:
In previous immuno-epidemiological studies of the naturally acquired antibody responses to merozoite surface protein-1 (MSP-1) of Plasmodium vivax, we had evidence that the responses to distinct erythrocytic stage antigens could be differentially regulated. The present study was designed to compare the antibody response to three asexual erythrocytic stage antigens vaccine candidates of P. vivax. Recombinant proteins representing the 19 kDa C-terminal region of MSP-1(PvMSP19), apical membrane antigen n-1 ectodomain (PvAMA-1), and the region II of duffy binding protein (PvDBP-RII) were compared in their ability to bind to IgG antibodies of serum samples collected from 220 individuals from the state of Pará, in the North of Brazil. During patent infection with P. vivax, the frequency of individuals with IgG antibodies to PvMSP1(19), PvAMA-1, and PvDBP-RII were 95, 72.7, and 44.5% respectively. Although the frequency of responders to PvDBP-RII was lower, this frequency increased in individuals following multiple malarial infections. Individually, the specific antibody levels did not decline significantly nine months after treatment, except to PvMSP1(19). Our results further confirm a complex regulation of the immune response to distinct blood stage antigens. The reason for that is presently unknown but it may contribute to the high risk of re-infection in individuals living in the endemic areas.
Resumo:
The TNF-related apoptosis inducing ligand (TRAIL)/TRAIL receptor system participates in crucial steps in immune cell activation or differentiation. It is able to inhibit proliferation and activation of T cells and to induce apoptosis of neurons and oligodendrocytes, and seems to be implicated in autoimmune diseases. Thus, TRAIL and TRAIL receptor genes are potential candidates for involvement in susceptibility to multiple sclerosis (MS). To test whether single-nucleotide polymorphisms (SNPs) in the human genes encoding TRAIL, TRAILR-1, TRAILR-2, TRAILR-3 and TRAILR-4 are associated with MS susceptibility, we performed a candidate gene case-control study in the Spanish population. 59 SNPs in the TRAIL and TRAIL receptor genes were analysed in 628 MS patients and 660 controls, and validated in an additional cohort of 295 MS patients and 233 controls. Despite none of the SNPs withstood the highly conservative Bonferroni correction, three SNPs showing uncorrected p values<0.05 were successfully replicated: rs4894559 in TRAIL gene, p = 9.8×10(-4), OR = 1.34; rs4872077, in TRAILR-1 gene, p = 0.005, OR = 1.72; and rs1001793 in TRAILR-2 gene, p = 0.012, OR = 0.84. The combination of the alleles G/T/A in these SNPs appears to be associated with a reduced risk of developing MS (p = 2.12×10(-5), OR = 0.59). These results suggest that genes of the TRAIL/TRAIL receptor system exerts a genetic influence on MS.
Resumo:
This paper describes the improvements achieved in our mosaicking system to assist unmanned underwater vehicle navigation. A major advance has been attained in the processing of images of the ocean floor when light absorption effects are evident. Due to the absorption of natural light, underwater vehicles often require artificial light sources attached to them to provide the adequate illumination for processing underwater images. Unfortunately, these flashlights tend to illuminate the scene in a nonuniform fashion. In this paper a technique to correct non-uniform lighting is proposed. The acquired frames are compensated through a point-by-point division of the image by an estimation of the illumination field. Then, the gray-levels of the obtained image remapped to enhance image contrast. Experiments with real images are presented
Resumo:
A Web-based tool developed to automatically correct relational database schemas is presented. This tool has been integrated into a more general e-learning platform and is used to reinforce teaching and learning on database courses. This platform assigns to each student a set of database problems selected from a common repository. The student has to design a relational database schema and enter it into the system through a user friendly interface specifically designed for it. The correction tool corrects the design and shows detected errors. The student has the chance to correct them and send a new solution. These steps can be repeated as many times as required until a correct solution is obtained. Currently, this system is being used in different introductory database courses at the University of Girona with very promising results
Resumo:
PURPOSE: Respiratory motion correction remains a challenge in coronary magnetic resonance imaging (MRI) and current techniques, such as navigator gating, suffer from sub-optimal scan efficiency and ease-of-use. To overcome these limitations, an image-based self-navigation technique is proposed that uses "sub-images" and compressed sensing (CS) to obtain translational motion correction in 2D. The method was preliminarily implemented as a 2D technique and tested for feasibility for targeted coronary imaging. METHODS: During a 2D segmented radial k-space data acquisition, heavily undersampled sub-images were reconstructed from the readouts collected during each cardiac cycle. These sub-images may then be used for respiratory self-navigation. Alternatively, a CS reconstruction may be used to create these sub-images, so as to partially compensate for the heavy undersampling. Both approaches were quantitatively assessed using simulations and in vivo studies, and the resulting self-navigation strategies were then compared to conventional navigator gating. RESULTS: Sub-images reconstructed using CS showed a lower artifact level than sub-images reconstructed without CS. As a result, the final image quality was significantly better when using CS-assisted self-navigation as opposed to the non-CS approach. Moreover, while both self-navigation techniques led to a 69% scan time reduction (as compared to navigator gating), there was no significant difference in image quality between the CS-assisted self-navigation technique and conventional navigator gating, despite the significant decrease in scan time. CONCLUSIONS: CS-assisted self-navigation using 2D translational motion correction demonstrated feasibility of producing coronary MRA data with image quality comparable to that obtained with conventional navigator gating, and does so without the use of additional acquisitions or motion modeling, while still allowing for 100% scan efficiency and an improved ease-of-use. In conclusion, compressed sensing may become a critical adjunct for 2D translational motion correction in free-breathing cardiac imaging with high spatial resolution. An expansion to modern 3D approaches is now warranted.
Evaluation of two long synthetic merozoite surface protein 2 peptides as malaria vaccine candidates.
Resumo:
Merozoite surface protein 2 (MSP2) is a promising vaccine candidate against Plasmodium falciparum blood stages. A recombinant 3D7 form of MSP2 was a subunit of Combination B, a blood stage vaccine tested in the field in Papua New Guinea. A selective effect in favour of the allelic family not represented by the vaccine argued for a MSP2 vaccine consisting of both dimorphic variants. An alternative approach to recombinant manufacture of vaccines is the production of long synthetic peptides (LSP). LSP exceeding a length of well over 100 amino acids can now be routinely synthesized. Synthetic production of vaccine antigens cuts the often time-consuming steps of protein expression and purification short. This considerably reduces the time for a candidate to reach the phase of clinical trials. Here we present the evaluation of two long synthetic peptides representing both allelic families of MSP2 as potential vaccine candidates. The constructs were well recognized by human immune sera from different locations and different age groups. Furthermore, peptide-specific antibodies in human immune sera were associated with protection from clinical malaria. The synthetic fragments share major antigenic properties with native MSP2. Immunization of mice with these antigens yielded high titre antibody responses and monoclonal antibodies recognized parasite-derived MSP2. Our results justify taking these candidate poly-peptides into further vaccine development.
Resumo:
[This corrects the article on p. e12773 in vol. 5.].
Resumo:
This study evaluated the relative occurrences of BK virus (BKV) and JC virus (JCV) infections in patients with chronic kidney disease (CKD). Urine samples were analysed from CKD patients and from 99 patients without CKD as a control. A total of 100 urine samples were analysed from the experimental (CKD patients) group and 99 from the control group. Following DNA extraction, polymerase chain reaction (PCR) was used to amplify a 173 bp region of the gene encoding the T antigen of the BKV and JCV. JCV and BKV infections were differentiated based on the enzymatic digestion of the amplified products using BamHI endonuclease. The results indicated that none of the patients in either group was infected with the BKV, whereas 11.1% (11/99) of the control group subjects and 4% (4/100) of the kidney patients were infected with the JCV. High levels of urea in the excreted urine, low urinary cellularity, reduced bladder washout and a delay in analysing the samples may have contributed to the low prevalence of infection. The results indicate that there is a need to increase the sensitivity of assays used to detect viruses in patients with CDK, especially given that polyomavirus infections, especially BKV, can lead to a loss of kidney function following transplantation.
Resumo:
Background and Objectives: Guidelines for bariatric surgery demand a psychological evaluation of applicants. The aim of this study was to evaluate if the presence of "psychological risk factors" predicts postoperative weight loss after gastric bypass. Methods: Medical records of obese women who underwent bariatric surgery between 2000 and 2004 were reviewed. Psychological assessment consisted of a one-hour semi-structured interview, summarized in a written report. Anthropometric assessment at baseline and 6,12,18 and 24 months after surgery included body weight, height and body mass index. Results: The mean BMI of included patients (N = 92) was 46.2 + 6,3 kg/m(2) (range 38.4-69.7). Based on the psychological assessment, 27% (N = 25) of the patients were classified as having "psychological risk factors" and 28% (N = 26) were diagnosed with a psychiatric diagnosis, most often major depression. Two years after gastric bypass, 16% of patients with "psychological risk factors" achieved an excellent result (%EWL > 75) versus 39% of those without (p < 0.05). About 1 out of 4 patients was in postoperative psychiatric treatment, but only half of them were identified as having "psychological risk factors" at baseline. Weight loss of patients initiating a psychiatric treatment only after surgery was less than of patients who continued psychiatric treatment already initiated before surgery (55.7 + 14.8 versus 66.5 + 14.2 %EWL). Conclusions: A single semi-structured psychological interview may identify patients who are at risk for diminished postoperative weight loss; however, psychological assessment did not identify those patients who were in need of a psychiatric postoperative treatment.