973 resultados para Cornell University. Dept. of Physics
Resumo:
The x-ray crystal structure of thiamine hydroiodide,C1ZH18N40S12' has been determined. The unit cell parameters are a = 13.84 ± 0.03, o b = 7.44 ± 0.01, c = 20.24 ± 0.02 A, 8 = 120.52 ± 0.07°, space group P2/c, z = 4. A total of 1445 reflections having ,2 > 2o(F2), 26 < 40° were collected on a Picker four-circle diffractometer with MoKa radiation by the 26 scan technique. The structure was solved by the heavy atom method. The iodine and sulphur atoms were refined anisotropically; only the positional parameters were refined for the hydrogen atoms. Successive least squares cycles yielded an unweighted R factor of 0.054. The site of protonation of the pyrimidine ring is the nitrogen opposite the amino group. The overall structure conforms very closely to the structures of other related thiamine compounds. The bonding surrounding the iodine atoms is distorted tetrahedral. The iodine atoms make several contacts with surrounding atoms most of them at or near the van der Waal's distances A thiaminium tetrachlorocobaltate salt was produced whose molecular and crystal structure was j~dged to be isomorphous to thiaminium tetrachlorocadmate.
Resumo:
This work deals with the design of the Institute of Physics of the University of São Paulo (IFUSP) main racetrack microtron accelerator end magnets. This is the last stage of acceleration, comprised of an accelerating section (1.04 m) and two end magnets (0.1585 T), in which a 5.10 MeV beam, produced by a racetrack microtron booster has its energy raised up to 31.15 MeV after 28 accelerations. POISSON code was used to give the final configuration that includes auxiliary pole pieces (clamps) and auxiliary homogenizing gaps. The clamps create a reverse fringe field region and avoid the vertical defocusing and the horizontal displacement of the beam produced by extended fringe fields; PTRACE code was used to perform the trajectory calculations in the fringe field region. The auxiliary homogenizing gaps improve the field uniformity as they create a magnetic shower that provides uniformity of ±0.3%, before the introduction of the correcting coils that will be attached to the pole faces. This method of correction, used in the IFUSP racetrack microtron booster magnets, enabled uniformity of ±0.001% in an average field of 0.1 T and will also be employed for these end magnets. © 1999 The American Physical Society.
Resumo:
Fil: Fernández, Claudia Nélida. Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación; Argentina.
Resumo:
Fil: Fernández, Claudia Nélida. Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación; Argentina.
Resumo:
v.36:no.9(1957)
Resumo:
v.10:no.13(1952)
Resumo:
no.37(1948)
Resumo:
1912
Resumo:
1910
Resumo:
1912, pt. 2
Resumo:
1918, pt.1