169 resultados para Coprecipitation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pequenas partículas de fase peroviskita de BaMnO3 foram preparadas por dois métodos: a rota da coprecipitação convencional (RCC) e o método convencional de microemulsão (MCM). As técnicas instrumentais utilizadas para caracterizar as amostras foram: microscopia eletrônica de varredura (SEM), difratometria de raios X (XRD), termogravimetria (TG) e análise térmica diferencial (DTA). A síntese de materiais em sistemas coloidais auto-organizados tem por objetivo aumentar a homogeneidade de tamanho e forma das partículas. Nos últimos anos aumentou a busca por materiais mais uniformes visando o aperfeiçoamento da microestrutura. A rota de microemulsão é um método alternativo para a síntese de materiais porque permite o controle da relação entre as concentrações de água e do tensoativo, (w), o qual controla o tamanho das gotículas de microemulsão denominadas microreatores. Peroviskita pura obtida de microemulsão forma-se em temperatura menor do que a fase precipitada, e resulta.em partículas com distribuição de tamanho mais adequada, de aproximadamente 0,1 mm de diâmetro comparado com a média de 0,5 mm das partículas coprecipitadas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SnO2 nanoparticles doped with TiO2, CoO, Nb2O3 and Al2O3 were obtained in this work using the methods of coprecipitation and polymeric precursor. X Ray Diffraction (XRD), and Scanning Electron Microscopy (SEM) were used to characterize the ceramic powders obtained. Their synterization capacity was determined by dilatometric studies. Sinterized samples of the system on study were also characterized electrically and microstructurally to determine their suitability as varistors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The two-dimensional hybrid organic-inorganic materials Zn-2-Cr and Zn-2-Al-LDHs (Layered Double Hydroxides) containing 4-(1H-pyrrol-1yl)benzoate anions as the interlayer anions were synthesized by the co-precipitation method at constant pH followed by subsequent hydrothermal treatment for 72 h. The materials were characterized by PXRD, C-13 CP-MAS NMR, ESR, TGA, and TEM. The basal spacing found by the X-ray diffraction technique is coincident with the formation of bilayers of the intercalated anions. Solid-state C-13 NMR and ESR data strongly suggest the partial in situ polymerization of the 4-(1H-pyrrol-1yl)benzoate anions during coprecipitation. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of Cu2+ contents and of firing temperature on sintering and crystallite growth of nanocrystalline SnO2 xerogels was analyzed by thermoanalysis (mass loss (TG), linear shrinkage, and differential thermal analysis (DTA)), X-ray powder diffraction (XRPD), and EXAFS (extended X-ray absorption fine structures) measurements. Samples were prepared by two methods: (a) coprecipitation of a colloidal suspension from aqueous solution containing both Sn(IV) and Cu(II) ions and (b) grafting copper(II) species on the surface of tin pride gel. The thermoanalysis has shown that the shrinkage associated with the mass loss decreases by increasing the amount of copper. The EXAFS measurements carried out at the Cu K edge have evidenced the presence of copper in substitutional solid solution for the dried xerogel prepared with 0.7 mol % of copper, while for higher concentration of doping, copper has been observed also at the external surface of crystallites. The solid solution is metastable and copper migrates toward the surface during firing. The XRPD and DTA results have shown a recrystallization process near 320 degrees C, which leads to crystallite growth. The presence of copper segregated near the crystallite surface controls its growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthesis of La1-xSrxMnO3 (x = 0.1, 0.2 and 0.3) by homogenous coprecipitation method using urea as precipitant agent Is reported. The particles are smaller than 200 nm after heating at 950 degreesC. Temperature dependence of the electrical resistivity was found to be similar to the reported value for single crystals of these manganites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The magnetorefractive effect (MRE) has been used for the first time to study the magnetotransport properties of La1-xSrxMnO3 perovskite materials. A direct correlation between the MRE and colossal magnetoresistance was observed. Samples with x = 0-0.3 prepared using the homogeneous coprecipitation and the solid state reaction methods were studied, covering the range of insulating to metallic behaviour. The M RE probed both the magnetically induced modification of the scattering of Drude-like electrons and the magnetic dependence of a stretching vibration mode. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis, characterization, and electrochemical study of the Zn(II)-Al(III) and Zn(II)-Cr(III) Layered Double Hydroxides (LDHs) containing 2-thiopenecarboxylate as the interlayer anions are described. The LDHs were prepared by the constant pH coprecipitation technique followed by hydrothermal treatment for 72 h. The materials were analyzed by PXRD, FT-IR, C-13 CP-MAS, EDX, TEM, and CV. The presence of the organic heterocyclic anions was confirmed by FT-IR and the related solid-state C-13 NMR data strongly suggested that these were dimerised during coprecipitation. Accordingly, the basal spacing found by the X-ray technique was similar to 15.3 Angstrom, a distance coincident with the formation of bilayers of the intercalated anions. The structural organization of all the new materials was greatly enhanced by hydrothermal treatment, as shown by PXRD. The improved organization of the bilayered structures had a strong influence in the electrochemical behaviour of clay-modified electrodes produced with these materials, such as the diminished resistance to the ionic flow through the LDHs films. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coated purpose of homogeneous distribution as a second phase is introduced in magnetic systems. Yttrium iron garnet (YIG) shows special interest as magnetic dye, microwave absorber, and magnetic fluids when heterocoagulated by other material. Surface and interface magnetic properties are intimately connected with the new properties of the silica on YIG system. Néel first introduced the concept of surface anisotropy, and Chen et al. developed a model that describes the anisotropy effects at the boundary surface particle, which was applied in this work. Spherical YIG particles were prepared by coprecipitation method and coated with silica using the tetraethylorthosilicate (TEOS) hydrolysis process. The silica-YIG boundary was investigated by transmission electron microscopy. Hysteresis loops comparatively show the profile of the naked and silica-covered YIG particles. The surface anisotropies were calculated using the Chen et al. approach. Indeed, in heterocoagulation systems, the surface anisotropy is a result of the interface symmetry breaking, as observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A nanoparticles of La1-xSrxMnO3 were synthesized using homogenous coprecipitation method. The precipate was washed with water and dried at 80 °C. The samples were characterized by X-ray powder diffraction, transmission electron microscopy (TEM) and electrical resistivity as a function of temperature. The TEM results show that the particle size is in the nanometer scale.