979 resultados para Copper content
Resumo:
This research was aimed at determining optimum Cu content for the alloy design of SUS 30411 austenitic steels having enhanced heat and corrosion resistance. Samples of the steel containing 1, 3, and 5 wt.% Cu were subjected to repeated heating and cooling to a temperature of 760 degrees C and to a maximum of 15 cycles. Hardness measurement and the corrosion behaviour in 1M NaCl solution were evaluated. The hardness increases with an increase in the number of heating cycles for the three compositions. The hardening response to the thermal cycles is however higher for the 1 wt.% Cu composition and decreases with an increase in the Cu wt.%. The SUS 30411 steel containing 3 wt.% Cu exhibited the least susceptibility to corrosion in the 1M NaCl solution irrespective of the number of heating cycles. The SUS 30411 steel containing 1 wt.% Cu was found to exhibit the highest susceptibility to corrosion for all heating cycles compared.
Resumo:
(Zr65Al10Ni10Cu15)(100-x) Nb-x glass forming alloys with Nb contents ranging from 0 to 15 at.% were prepared by water-cooled copper mould cast. The alloys with different Nb contents exhibited different microstructures and mechanical properties. Unlike the monolithic Zr65Al10Ni10Cu15 bulk metallic glass, only a few primary bee beta-Ti phase dendrites were found to distribute in the glassy matrix of the alloys with x = 5. For alloys with x = 10, more beta-phase dendrites forms, together with quasicrystalline particles densely distributed in the matrix of the alloys. For alloys with x = 15, the microstructure of the alloy is dominated by a high density of fully developed P-phase dendrites and the volume fraction of quasicrystalline particles significantly decreases. Room temperature compression tests showed that the alloys with x = 5 failed at 1793 MPa and exhibited an obvious plastic strain of 3.05%, while the other samples all failed in a brittle manner. The ultimate fracture strengths are 1793, 1975 and 1572 MPa for the alloys with x = 0, 10 and 15 at.% Nb, respectively.
Resumo:
postprint
Resumo:
Haematological changes in a freshwater teleost, Cyprinus carpio var. communis, exposed to acute and sublethal toxicity of copper sulphate were studied. During the acute treatment, erythrocyte and leucocyte count, and haemoglobin content increased, whereas during the sublethal treatment, erythrocyte count and haemoglobin content decreased and leucocyte count increased.
Resumo:
The corrosion of ETP copper in natural seawater and putrid seawater has been studied. The corrosion rates and the sulphide content were monitored at regular intervals. In the absence of oxygen in the putrid media, the presence of sulphide favoured a reduction in the corrosion rate.
Resumo:
Experimental sediments and water from shallow, eutrophic Dianchi Lakes were treated in a controlled laboratory microcosm using different chemicals under different anoxic levels. This study revealed that the polyaluminum chloride (PAC) was able to inhibit the phosphorus release and decrease the UV254 value at any anoxic level. When the DO concentrations were between 0.76-0.95 mg(.) L-1, the UV(254)value, total phosphorus (TP), and total dissolved phosphorus (TDP) in the water column were decreased by 71.93%, 87.12% and 64.24% respectively. The UV254, TP, and TDP were also decreased by 72.94%, 70.87% and 50.76% respectively at the levels of 4.56-5.32mg(.)L(-1) of DO concentrations. The treatment effects of TP and TDP in the water column using copper sulfate however were not as efficient as the PAC treatment. The UV254 value was increased with the addition of copper sulfate at every anoxic level tested but the chlorophyll-a (Chl-a) content was decreased rapidly and efficiently by copper sulfate more than the treatment by PAC. When the DO concentrations were 0.76-0.86mg(.)L(-1) and 4.75-5.14mg(.)L(-1), the Chl-a concentrations were decreased by 84.87% and 75.07% respectively through copper sulfate treatment. With additions of PAC and copper sulfate, the phosphorus fractions in sediments were shifted forward to the favorable shapes that have little ability of release. The TP concentrations in sediments were increased after treatment via PAC and copper sulfate. Under anoxic conditions, most of the BD-P (Fe-P) to NaOH-P (Al-P) was converted using the recommended PAC dose in BD-P rich sediment. Similar to the PAC, the copper sulfate also could flocculate the exchange phosphorus from sediment to overlying water. Overall though, the effects of copper sulfate treatment were not better than that of the PAC.
Resumo:
It is shown that near-Nernstian calibration slopes can be obtained with a Cu1.8Se electrode in a range of cupric ion buffers in spite of a high chloride content. Best results are obtained with the ligands ethylenediamine, glycine and histidine. The onset of cupric ion toxicity towards marine organisms falls within the pCu calibration range obtained with glycine, and the Cu1.8Se electrode could, therefore, be useful for monitoring cupric ion activity in bioassays in sea-water media.
Resumo:
MgO supported copper salt of molybdovanadophosphoric acid H4PMo11VO40 catalysts were prepared in alcohol by impregnation and the carbon deposition over these catalysts during the n-hexanol oxidation reaction was studied. The coke predominantly deposited on the catalyst surface in the form of CH., and it was not found that it caused the deactivation of the catalyst. The XRD, IR, XPS characterizations reveal that the Keggin structure of the CPMV was unaffected by carbon deposition. Moreover, it was shown that the supported CPMVs over the MgO surface can be beneficial to eliminate the coke. The temperature programmed oxidation (TPO) study showed that coke was formed over the catalyst on two different sites: (1) deposited on the CPMVs which can be burn off at a low temperature; (2) deposited on the MgO which could only be removed at higher temperature. The coke content reached constant with the reaction time increasing.
Resumo:
NO decomposition reaction was investigated over La2-xThxCuO4, in which the valence of copper was controlled by Th substitution and was characterized by XPS measurement. A close correlation between the valence of copper and the activity was observed. The activity increased with the decrease of the average oxidation number of copper, and increased with the increase of Cu+ content, suggesting that the transition metal with low valence (Cu+) is active for the reaction in the present cases.
Resumo:
Pyatt, F.B., Pyatt, A.J., Walker, C., Sheen, T., Grattan, J.P, The heavy metal content of skeletons from an ancient metalliferous polluted area in southern Jordan with particular reerence to bioaccumulation and human health, Ecotoxicology & Environmental Safety 60, 13th August 2003, 295-300
Resumo:
Although the bactericidal effect of copper has been known for centuries, there is a current resurgence of interest in the use of this element as an antimicrobial agent. During this study the use of dendritic copper microparticles embedded in an alginate matrix as a rapid method for the deactivation of Escherichia coli ATCC 11775 was investigated. The copper/alginate produced a decrease in the minimum inhibitory concentration from free copper powder dispersed in the media from 0.25 to 0.065 mg/ml. Beads loaded with 4% Cu deactivated 99.97% of bacteria after 90 minutes, compared to a 44.2% reduction in viability in the equivalent free copper powder treatment. There was no observed loss in the efficacy of this method with increasing bacterial loading up to 10(6) cells/ml, however only 88.2% of E. coli were deactivated after 90 minutes at a loading of 10(8) cells/ml. The efficacy of this method was highly dependent on the oxygen content of the media, with a 4.01% increase in viable bacteria observed under anoxic conditions compared to a >99% reduction in bacterial viability in oxygen tensions above 50% of saturation. Scanning electron micrographs (SEM) of the beads indicated that the dendritic copper particles sit as discrete clusters within a layered alginate matrix, and that the external surface of the beads has a scale-like appearance with dendritic copper particles extruding. E. coli cells visualised using SEM indicated a loss of cellular integrity upon Cu bead treatment with obvious visible blebbing. This study indicates the use of microscale dendritic particles of Cu embedded in an alginate matrix to effectively deactivate E. coli cells and opens the possibility of their application within effective water treatment processes, especially in high particulate waste streams where conventional methods, such as UV treatment or chlorination, are ineffective or inappropriate.
Resumo:
Previous studies have shown that low levels of copper (down to 0.8 muM) induce bradycardia in the blue mussel (Mytilus edulis) and that this is not caused by prolonged Valve closure. The aim of this study was to determine the precise mechanism responsible. To establish if copper was directly affecting heart cell physiology, recordings of contractions from isolated ventricular strips were made using an isometric force transducer, in response to copper concentrations (as CuCl2) ranging between 1 muM and 1 mM. Inhibition of mechanical activity only occurred at 1 mM copper, suggesting that the copper-induced bradycardia observed in whole animals cannot be attributed to direct cardiotoxicity. Effects of copper on the cardiac nerves were subsequently examined. Following removal of visceral ganglia (from where the cardiac nerves originate), exposure to 12.5 muM copper had no effect on the heart rate of whole animals. The effect of copper on the heart rate of mussels could not be abolished by depletion of the monoamine content of the animal using reserpine. However, pre-treatment of the animals with alpha -bungarotoxin considerably reduced the sensitivity of the heart to copper. These results indicated that the influence of copper on the heart of M. edulis might be mediated by a change in the activity of cholinergic nerves to heart. In the final experiments, mussels were injected with either benzoquinonium or D-tubocurarine, prior to copper exposure, in an attempt to selectively block the inhibitory or excitatory cholinoreceptors of the heart. Only benzoquinonium decreased the susceptibility of the heart to copper, suggesting that copper affects the cardiac activity of blue mussels by stimulating inhibitory cholinergic nerves to the heart. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
It has previously been shown that across different arsenic (As) soil environments, a decrease in grain selenium (Se), zinc (Zn), and nickel (Ni) concentrations is associated with an increase in grain As. In this study we aim to determine if there is a genetic element for this observation or if it is driven by the soil As environment. To determine the genetic and environmental effect on grain element composition, multielement analysis using ICP-MS was performed on rice grain from a range of rice cultivars grown in 4 different field sites (2 in Bangladesh and 2 in West Bengal). At all four sites a negative correlation was observed between grain As and grain Ni, while at three of the four sites a negative correlation was observed between grain As and grain Se and grain copper (Cu). For manganese, Ni, Cu, and Se there was also a significant genetic interaction with grain arsenic indicating some cultivars are more strongly affected by arsenic than others.
Resumo:
Few attempts have been made to improve the activity of plant compounds with low antimicrobial efficacy. (+)-Catechin, a weak antimicrobial tea flavanol, was combined with putative adjuncts and tested against different species of bacteria. Copper(II) sulphate enhanced (+)-catechin activity against Pseudomonas aeruginosa but not Staphylococcus aureus, Proteus mirabilis or Escherichia coli. Attempts to raise the activity of (+)-catechin against two unresponsive species, S. aureus and E. coli, with iron(II) sulphate, iron(III) chloride, and vitamin C, showed that iron(II) enhanced (+)-catechin against S. aureus, but not E. coli; neither iron(III) nor combined iron(II) and copper(II), enhanced (+)-catechin activity against either species. Vitamin C enhanced copper(II) containing combinations against both species in the absence of iron(II). Catalase or EDTA added to active samples removed viability effects suggesting that active mixtures had produced H2O2via the action of added metal(II) ions. H2O2 generation by (+)-catechin plus copper(II) mixtures and copper(II) alone could account for the principal effect of bacterial growth inhibition following 30 minute exposures as well as the antimicrobial effect of (+)-catechin–iron(II) against S. aureus. These novel findings about a weak antimicrobial flavanol contrast with previous knowledge of more active flavanols with transition metal combinations. Weak antimicrobial compounds like (+)-catechin within enhancement mixtures may therefore be used as efficacious agents. (+)-Catechin may provide a means of lowering copper(II) or iron(II) contents in certain crop protection and other products.
Resumo:
The new thermoelectric material BiOCuTe exhibits an electrical conductivity of 224 S cm-1 and a Seebeck coefficient of +186 μV K-1 at 373 K, together with an extremely low lattice thermal conductivity of ∼ 0.5 W m-1 K-1. This results in a ZT of 0.42 at 373 K, which increases to 0.66 at the maximum temperature investigated, 673 K.