977 resultados para Cook-Levin SAT SAT-solver
Resumo:
Digital Image
Resumo:
postwar version of F 38358
Resumo:
tri terezinsti kralove
Resumo:
Drei Koenige im Ghetto!
Resumo:
Photograph found in book donated to LBI library by Alex Natan (AR 11349)
Resumo:
There is a world-wide trend for deteriorating water quality and light levels in the coastal zone, and this has been linked to declines in seagrass abundance. Localized management of seagrass meadow health requires that water quality guidelines for meeting seagrass growth requirements are available. Tropical seagrass meadows are diverse and can be highly dynamic and we have used this dynamism to identify light thresholds in multi-specific meadows dominated by Halodule uninervis in the northern Great Barrier Reef, Australia. Seagrass cover was measured at similar to 3 month intervals from 2008 to 2011 at three sites: Magnetic Island (MI) Dunk Island (DI) and Green Island (GI). Photosynthetically active radiation was continuously measured within the seagrass canopy, and three light metrics were derived. Complete seagrass loss occurred at MI and DI and at these sites changes in seagrass cover were correlated with the three light metrics. Mean daily irradiance (I-d) above 5 and 8.4 mol m(-2) d(-1) was associated with gains in seagrass at MI and DI, however a significant correlation (R = 0.649, p < 0.05) only occurred at MI. The second metric, percent of days below 3 mol m(-2) d(-1), correlated the most strongly (MI, R = -0.714, p < 0.01 and DI, R = -0.859, p = <0.001) with change in seagrass cover with 16-18% of days below 3 mol m(-2) d(-1) being associated with more than 50% seagrass loss. The third metric, the number of hours of light saturated irradiance (H-sat) was calculated using literature-derived data on saturating irradiance (E-k). H-sat correlated well (R = 0.686, p <0.01; and DI, R = 0.704, p < 0.05) with change in seagrass abundance, and was very consistent between the two sites as 4 H-sat was associated with increases in seagrass abundance at both sites, and less than 4 H-sat with more than 50% loss. At the third site (GI), small seasonal losses of seagrass quickly recovered during the growth season and the light metrics did not correlate (p > 0.05) with change in percent cover, except for I-d which was always high, but correlated with change in seagrass cover. Although distinct light thresholds were observed, the departure from threshold values was also important. For example, light levels that are well below the thresholds resulted in more severe loss of seagrass than those just below the threshold. Environmental managers aiming to achieve optimal seagrass growth conditions can use these threshold light metrics as guidelines; however, other environmental conditions, including seasonally varying temperature and nutrient availability, will influence seagrass responses above and below these thresholds. (C) 2012 Published by Elsevier Ltd.
Resumo:
Background Studies of mid-aged adults provide evidence of a relationship between sitting-time and all-cause mortality, but evidence in older adults is limited. The aim is to examine the relationship between total sitting-time and all-cause mortality in older women. Methods The prospective cohort design involved 6656 participants in the Australian Longitudinal Study on Women's Health who were followed for up to 9 years (2002, age 76–81, to 2011, age 85–90). Self-reported total sitting-time was linked to all-cause mortality data from the National Death Index from 2002 to 2011. Cox proportional hazard models were used to examine the relationship between sitting-time and all-cause mortality, with adjustment for potential sociodemographic, behavioural and health confounders. Results There were 2003 (30.1%) deaths during a median follow-up of 6 years. Compared with participants who sat <4 h/day, those who sat 8–11 h/day had a 1.45 times higher risk of death and those who sat ≥11 h/day had a 1.65 times higher risk of death. These risks remained after adding sociodemographic and behavioural covariates, but were attenuated after adjustment for health covariates. A significant interaction (p=0.02) was found between sitting-time and physical activity (PA), with increased mortality risk for prolonged sitting only among participants not meeting PA guidelines (HR for sitting ≥8 h/day: 1.31, 95% CI 1.07 to 1.61); HR for sitting ≥11 h/day: 1.47, CI 1.15 to 1.93). Conclusions Prolonged sitting-time was positively associated with all-cause mortality. Women who reported sitting for more than 8 h/day and did not meet PA guidelines had an increased risk of dying within the next 9 years.
Resumo:
This guide has been produced to assist Australian avocado growers and others involved in the avocado supply chain to identify the wide range of pests, diseases, nutrient deficiencies and toxicitites, and other disorders that may affect orchards and the quality of fruit reaching the consumer
Resumo:
2 volumes each containing the geneaelogy of the family of Jack Weinstein: the Weinstein and the Levin families. Volumes contain photographs, newspaper clippings and other materials relevant to history of the two families.
Resumo:
The compositional dependence of thermal properties, such as glass transition temperature (T-g), non-reversing enthalpy change (Delta H-NR) and the specific heat capacity change (Delta C-p) of melt quenched Ge7Se93-xSbx (21 a parts per thousand currency sign x a parts per thousand currency sign 31) glasses, has been studied using alternating differential scanning calorimetry (ADSC) which is analogous to modulated differential scanning calorimetry (MDSC). The glass transition temperature, T-g, which is a measure of global connectivity of the glass, has been found to increase with the addition of Sb. In addition, a change in slope has been observed in the composition dependence of T-g at an average coordination aOE (c) r > = 2.40. The experimentally observed compositional variation of glass transition temperature, has been compared with the theoretical predictions from the stochastic agglomeration theory (SAT) and has been found to be consistent. Further, a narrow thermally reversing window is seen in the compositional variation of the relaxation enthalpy (Delta H-NR), which is centered around aOE (c) r > = 2.40. The change in specific heat capacity (Delta C-p) at T-g is also found to exhibit a distinct minima at aOE (c) r > = 2.40, suggesting that the structural rearrangements for the liquid in the glass transition region are minimized around aOE (c) r > = 2.4.
Resumo:
The knowledge of hydrological variables (e. g. soil moisture, evapotranspiration) are of pronounced importance in various applications including flood control, agricultural production and effective water resources management. These applications require the accurate prediction of hydrological variables spatially and temporally in watershed/basin. Though hydrological models can simulate these variables at desired resolution (spatial and temporal), often they are validated against the variables, which are either sparse in resolution (e. g. soil moisture) or averaged over large regions (e. g. runoff). A combination of the distributed hydrological model (DHM) and remote sensing (RS) has the potential to improve resolution. Data assimilation schemes can optimally combine DHM and RS. Retrieval of hydrological variables (e. g. soil moisture) from remote sensing and assimilating it in hydrological model requires validation of algorithms using field studies. Here we present a review of methodologies developed to assimilate RS in DHM and demonstrate the application for soil moisture in a small experimental watershed in south India.
Resumo:
James Cook was born into a working class family and rose to become a national hero, one of the greatest explorers of all time. He was celebrated in the popular culture through dance, music, song, and theatre. Today little is remembered of these highly esteemed works, although they remained well-known in the nineteenth-century.
Resumo:
Microbiological quality of the treated wastewater is an important parameter for its reuse. The data oil the Fecal Coliform (FC) and Fecal Streptococcus (FS) at different stages of treatment in the Sewage Treatment Plants (STPs) in Delhi watershed is not available, therefore in the present study microbial profiling of STPs was carried out to assess the effluent quality for present and future reuse options. This Study further evaluates the water quality profiles at different stages of treatment for 16 STPs in Delhi city. These STPs are based on conventional Activated Sludge Process (ASP), extended aeration, physical, chemical and biological treatment (BIOFORE), Trickling Filter and Oxidation Pond. The primary effluent quality produced from most of the STPs was suitable for Soil Aquifer Treatment (SAT). Extended Hydraulic Retention Time (HRT) as a result Of low inflow to the STPS Was responsible for high turbidity, COD and BODs removal. Conventional ASP based STPs achieved 1.66 log FC and 1.06 log FS removal. STPs with extended aeration treatment process produced better quality effluent with maximum 4 log order reduction in FC and FS levels. ``Kondli'' and ``Nilothi'' STPs employing ASP, produced better quality secondary effluent as compared to other STPs based oil similar treatment process. Oxidation Pond based STPs showed better FC and FS removals, whereas good physiochemical quality was achieved during the first half of the treatment. Based upon physical, chemical and microbiological removal efficiencies, actual integrated efficiency (IEa) of each STP was determined to evaluate its Suitability for reuse for irrigation purposes. Except Mehrauli'' and ``Oxidation Pond'', effluents from all other STPs require tertiary treatment for further reuse. Possible reuse options, depending Upon the geographical location, proximity of facilities of potential users based oil the beneficial uses, and sub-soil types, etc. for the Delhi city have been investigated, which include artificial groundwater recharge, aquaculture, horticulture and industrial uses Such as floor washing, boiler feed, and cooling towers, etc. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Accurate estimations of water balance are needed in semi-arid and sub-humid tropical regions, where water resources are scarce compared to water demand. Evapotranspiration plays a major role in this context, and the difficulty to quantify it precisely leads to major uncertainties in the groundwater recharge assessment, especially in forested catchments. In this paper, we propose to assess the importance of deep unsaturated regolith and water uptake by deep tree roots on the groundwater recharge process by using a lumped conceptual model (COMFORT). The model is calibrated using a 5 year hydrological monitoring of an experimental watershed under dry deciduous forest in South India (Mule Hole watershed). The model was able to simulate the stream discharge as well as the contrasted behaviour of groundwater table along the hillslope. Water balance simulated for a 32 year climatic time series displayed a large year-to-year variability, with alternance of dry and wet phases with a time period of approximately 14 years. On an average, input by the rainfall was 1090 mm year(-1) and the evapotranspiration was about 900 mm year(-1) out of which 100 mm year(-1) was uptake from the deep saprolite horizons. The stream flow was 100 mm year(-1) while the groundwater underflow was 80 mm year(-1). The simulation results suggest that (i) deciduous trees can uptake a significant amount of water from the deep regolith, (ii) this uptake, combined with the spatial variability of regolith depth, can account for the variable lag time between drainage events and groundwater rise observed for the different piezometers and (iii) water table response to recharge is buffered due to the long vertical travel time through the deep vadose zone, which constitutes a major water reservoir. This study stresses the importance of long term observations for the understanding of hydrological processes in tropical forested ecosystems. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A Finite Element Method based forward solver is developed for solving the forward problem of a 2D-Electrical Impedance Tomography. The Method of Weighted Residual technique with a Galerkin approach is used for the FEM formulation of EIT forward problem. The algorithm is written in MatLAB7.0 and the forward problem is studied with a practical biological phantom developed. EIT governing equation is numerically solved to calculate the surface potentials at the phantom boundary for a uniform conductivity. An EIT-phantom is developed with an array of 16 electrodes placed on the inner surface of the phantom tank filled with KCl solution. A sinusoidal current is injected through the current electrodes and the differential potentials across the voltage electrodes are measured. Measured data is compared with the differential potential calculated for known current and solution conductivity. Comparing measured voltage with the calculated data it is attempted to find the sources of errors to improve data quality for better image reconstruction.