965 resultados para Conventional rate equations
Resumo:
Stress corrosion cracking susceptibility was investigated for an ultra-fine grained (UFG) AI-7.5Mg alloy and a conventional 5083 H111 alloy in natural seawater using slow strain rate testing (SSRT) at very slow strain rates between 1E(-5) s(-1), 1E(-6) s(-1) and 1E(-7) s(-1). The UFG Al-7.5Mg alloy was produced by cryomilling, while the 5083 H111 alloy is considered as a wrought manufactured product. The response of tensile properties to strain rate was analyzed and compared. Negative strain rate sensitivity was observed for both materials in terms of the elongation to failure. However, the UFG alloy displayed strain rate sensitivity in relation to strength while the conventional alloy was relatively strain rate insensitive. The mechanical behavior of the conventional 5083 alloy was attributed to dynamic strain aging (DSA) and delayed pit propagation while the performance of the UFG alloy was related to a diffusion-mediated stress relaxation mechanism that successfully delayed crack initiation events, counteracted by exfoliation and pitting which enhanced crack initiation. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
PURPOSE: To prospectively assess the depiction rate and morphologic features of myocardial bridging (MB) of coronary arteries with 64-section computed tomographic (CT) coronary angiography in comparison to conventional coronary angiography. MATERIALS AND METHODS: Patients were simultaneously enrolled in a prospective study comparing CT and conventional coronary angiography, for which ethics committee approval and informed consent were obtained. One hundred patients (38 women, 62 men; mean age, 63.8 years +/- 11.6 [standard deviation]) underwent 64-section CT and conventional coronary angiography. Fifty additional patients (19 women, 31 men; mean age, 59.2 years +/- 13.2) who underwent CT only were also included. CT images were analyzed for the direct signs length, depth, and degree of systolic compression, while conventional angiograms were analyzed for the indirect signs step down-step up phenomenon, milking effect, and systolic compression of the tunneled segment. Statistical analysis was performed with Pearson correlation analysis, the Wilcoxon two-sample test, and Fisher exact tests. RESULTS: MB was detected with CT in 26 (26%) of 100 patients and with conventional angiography in 12 patients (12%). Mean tunneled segment length and depth at CT (n = 150) were 24.3 mm +/- 10.0 and 2.6 mm +/- 0.8, respectively. Systolic compression in the 12 patients was 31.3% +/- 11.0 at CT and 28.2% +/- 10.5 at conventional angiography (r = 0.72, P < .001). With CT, a significant correlation was not found between systolic compression and length (r = 0.16, P = .25, n = 150) but was found with depth (r = 0.65, P < .01, n = 150) of the tunneled segment. In 14 patients in whom MB was found at CT but not at conventional angiography, length, depth, and systolic compression were significantly lower than in patients in whom both modalities depicted the anomaly (P < .001, P < .01, and P < .001, respectively). CONCLUSION: The depiction rate of MB is greater with 64-section CT coronary angiography than with conventional coronary angiography. The degree of systolic compression of MB significantly correlates with tunneled segment depth but not length.
Resumo:
BACKGROUND Bolt-kit systems are increasingly used as an alternative to conventional external cerebrospinal fluid (CSF) drainage systems. Since 2009 we regularly utilize bolt-kit external ventricular drainage (EVD) systems with silver-bearing catheters inserted manually with a hand drill and skull screws for emergency ventriculostomy. For non-emergency situations, we use conventional ventriculostomy with subcutaneous tunneled silver-bearing catheters, performed in the operating room with a pneumatic drill. This retrospective analysis compared the two techniques in terms of infection rates. METHODS 152 patients (aged 17-85 years, mean=55.4 years) were included in the final analysis; 95 received bolt-kit silver-bearing catheters and 57 received conventionally implanted silver-bearing catheters. The primary endpoint combined infection parameters: occurrence of positive CSF culture, colonization of catheter tips, or elevated CSF white blood cell counts (>4/μl). Secondary outcome parameters were presence of microorganisms in CSF or on catheter tips. Incidence of increased CSF cell counts and number of patients with catheter malposition were also compared. RESULTS The primary outcome, defined as analysis of combined infection parameters (occurrence of either positive CSF culture, colonization of the catheter tips or raised CSF white blood cell counts >4/μl)was not significantly different between the groups (58.9% bolt-kit group vs. 63.2% conventionally implanted group, p=0.61, chi-square-test). The bolt-kit group was non-inferior and not superior to the conventional group (relative risk reduction of 6.7%; 90% confidence interval: -19.9% to 25.6%). Secondary outcomes showed no statistically significant difference in the incidence of microorganisms in CSF (2.1% bolt-kit vs. 5.3% conventionally implanted; p=0.30; chi-square-test). CONCLUSIONS This analysis indicates that silver-bearing EVD catheters implanted with a bolt-kit system outside the operating room do not significantly elevate the risk of CSF infection as compared to conventional implant methods.
Resumo:
In this paper we show how to construct the Evans function for traveling wave solutions of integral neural field equations when the firing rate function is a Heaviside. This allows a discussion of wave stability and bifurcation as a function of system parameters, including the speed and strength of synaptic coupling and the speed of axonal signals. The theory is illustrated with the construction and stability analysis of front solutions to a scalar neural field model and a limiting case is shown to recover recent results of L. Zhang [On stability of traveling wave solutions in synaptically coupled neuronal networks, Differential and Integral Equations, 16, (2003), pp.513-536.]. Traveling fronts and pulses are considered in more general models possessing either a linear or piecewise constant recovery variable. We establish the stability of coexisting traveling fronts beyond a front bifurcation and consider parameter regimes that support two stable traveling fronts of different speed. Such fronts may be connected and depending on their relative speed the resulting region of activity can widen or contract. The conditions for the contracting case to lead to a pulse solution are established. The stability of pulses is obtained for a variety of examples, in each case confirming a previously conjectured stability result. Finally we show how this theory may be used to describe the dynamic instability of a standing pulse that arises in a model with slow recovery. Numerical simulations show that such an instability can lead to the shedding of a pair of traveling pulses.
Resumo:
AIMS: Renal dysfunction is a powerful predictor of adverse outcomes in patients hospitalized for acute coronary syndrome. Three new glomerular filtration rate (GFR) estimating equations recently emerged, based on serum creatinine (CKD-EPIcreat), serum cystatin C (CKD-EPIcyst) or a combination of both (CKD-EPIcreat/cyst), and they are currently recommended to confirm the presence of renal dysfunction. Our aim was to analyse the predictive value of these new estimated GFR (eGFR) equations regarding mid-term mortality in patients with acute coronary syndrome, and compare them with the traditional Modification of Diet in Renal Disease (MDRD-4) formula. METHODS AND RESULTS: 801 patients admitted for acute coronary syndrome (age 67.3±13.3 years, 68.5% male) and followed for 23.6±9.8 months were included. For each equation, patient risk stratification was performed based on eGFR values: high-risk group (eGFR<60ml/min per 1.73m2) and low-risk group (eGFR⩾60ml/min per 1.73m2). The predictive performances of these equations were compared using area under each receiver operating characteristic curves (AUCs). Overall risk stratification improvement was assessed by the net reclassification improvement index. The incidence of the primary endpoint was 18.1%. The CKD-EPIcyst equation had the highest overall discriminate performance regarding mid-term mortality (AUC 0.782±0.20) and outperformed all other equations (ρ<0.001 in all comparisons). When compared with the MDRD-4 formula, the CKD-EPIcyst equation accurately reclassified a significant percentage of patients into more appropriate risk categories (net reclassification improvement index of 11.9% (p=0.003)). The CKD-EPIcyst equation added prognostic power to the Global Registry of Acute Coronary Events (GRACE) score in the prediction of mid-term mortality. CONCLUSION: The CKD-EPIcyst equation provides a novel and improved method for assessing the mid-term mortality risk in patients admitted for acute coronary syndrome, outperforming the most widely used formula (MDRD-4), and improving the predictive value of the GRACE score. These results reinforce the added value of cystatin C as a risk marker in these patients.
Resumo:
This paper is concerned with an analysis of the Becker-Döring equations which lie at the heart of a number of descriptions of non-equilibrium phase transitions and related complex dynamical processes. The Becker-Döring theory describes growth and fragmentation in terms of stepwise addition or removal of single particles to or from clusters of similar particles and has been applied to a wide range of problems of physicochemical and biological interest within recent years. Here we consider the case where the aggregation and fragmentation rates depend exponentially on cluster size. These choices of rate coefficients at least qualitatively correspond to physically realistic molecular clustering scenarios such as occur in, for example, simulations of simple fluids. New similarity solutions for the constant monomer Becker-Döring system are identified, and shown to be generic in the case of aggregation and fragmentation rates that depend exponentially on cluster size.
Resumo:
Aim: To measure the influence of spherical intraocular lens implantation and conventional myopic laser in situ keratomileusis on peripheral ocular aberrations. Setting: Visual & Ophthalmic Optics Laboratory, School of Optometry & Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia. Methods: Peripheral aberrations were measured using a modified commercial Hartmann-Shack aberrometer across 42° x 32° of the central visual field in 6 subjects after spherical intraocular lens (IOL) implantation and in 6 subjects after conventional laser in situ keratomileusis (LASIK) for myopia. The results were compared with those of age matched emmetropic and myopic control groups. Results: The IOL group showed a greater rate of quadratic change of spherical equivalent refraction across the visual field, higher spherical aberration, and greater rates of change of higher-order root-mean-square aberrations and total root-mean-square aberrations across the visual field than its emmetropic control group. However, coma trends were similar for the two groups. The LASIK group had a greater rate of quadratic change of spherical equivalent refraction across the visual field, higher spherical aberration, the opposite trend in coma across the field, and greater higher-order root-mean-square aberrations and total root-mean-square aberrations than its myopic control group. Conclusion: Spherical IOL implantation and conventional myopia LASIK increase ocular peripheral aberrations. They cause considerable increase in spherical aberration across the visual field. LASIK reverses the sign of the rate of change in coma across the field relative to that of the other groups. Keywords: refractive surgery, LASIK, IOL implantation, aberrations, peripheral aberrations
Resumo:
Objective: To determine the effect of zinc supplementation on taste perception in a group of hemodialysis patients. Design and Setting: Double-blind randomized placebo-controlled study in a teaching hospital dialysis unit. Patients: Fifteen stable hemodialysis patients randomized to placebo (6 male, 2 female; median age, 67; range, 30 to 72 years) or treatment (5 male, 2 female; median age, 60; range, 31 to 76 years). Intervention: Treatment group received zinc sulfate 220 mg per day for 6 weeks, and the placebo group received an apparently identical dummy pill. Main Outcome Measures: Taste scores by visual analogue scales, normalized protein catabolic rate and plasma, whole blood and red cell zinc levels. Results: At baseline, sweet and salt tastes were identified correctly by both groups. Sour was often confused with salt. Sour solutions of different concentrations were not distinguishable. Taste scores were not different after 6 weeks for either group. There was no significant increment in zinc levels or normalized protein catabolic rate for either group. Conclusion: We found a disturbance of taste perception in hemodialysis patients, particularly for the sour modality, which was not corrected by this regimen of zinc supplementation. These results cast doubts on the conclusions of earlier studies that indicated an improvement in taste after zinc supplementation.
Resumo:
Based on the eigen crack opening displacement (COD) boundary integral equations, a newly developed computational approach is proposed for the analysis of multiple crack problems. The eigen COD particularly refers to a crack in an infinite domain under fictitious traction acting on the crack surface. With the concept of eigen COD, the multiple cracks in great number can be solved by using the conventional displacement discontinuity boundary integral equations in an iterative fashion with a small size of system matrix. The interactions among cracks are dealt with by two parts according to the distances of cracks to the current crack. The strong effects of cracks in adjacent group are treated with the aid of the local Eshelby matrix derived from the traction BIEs in discrete form. While the relatively week effects of cracks in far-field group are treated in the iteration procedures. Numerical examples are provided for the stress intensity factors of multiple cracks, up to several thousands in number, with the proposed approach. By comparing with the analytical solutions in the literature as well as solutions of the dual boundary integral equations, the effectiveness and the efficiencies of the proposed approach are verified.
Resumo:
A newly developed computational approach is proposed in the paper for the analysis of multiple crack problems based on the eigen crack opening displacement (COD) boundary integral equations. The eigen COD particularly refers to a crack in an infinite domain under fictitious traction acting on the crack surface. With the concept of eigen COD, the multiple cracks in great number can be solved by using the conventional displacement discontinuity boundary integral equations in an iterative fashion with a small size of system matrix to determine all the unknown CODs step by step. To deal with the interactions among cracks for multiple crack problems, all cracks in the problem are divided into two groups, namely the adjacent group and the far-field group, according to the distance to the current crack in consideration. The adjacent group contains cracks with relatively small distances but strong effects to the current crack, while the others, the cracks of far-field group are composed of those with relatively large distances. Correspondingly, the eigen COD of the current crack is computed in two parts. The first part is computed by using the fictitious tractions of adjacent cracks via the local Eshelby matrix derived from the traction boundary integral equations in discretized form, while the second part is computed by using those of far-field cracks so that the high computational efficiency can be achieved in the proposed approach. The numerical results of the proposed approach are compared not only with those using the dual boundary integral equations (D-BIE) and the BIE with numerical Green's functions (NGF) but also with those of the analytical solutions in literature. The effectiveness and the efficiency of the proposed approach is verified. Numerical examples are provided for the stress intensity factors of cracks, up to several thousands in number, in both the finite and infinite plates.
Resumo:
Series reactors are used in distribution grids to reduce the short-circuit fault level. Some of the disadvantages of the application of these devices are the voltage drop produced across the reactor and the steep front rise of the transient recovery voltage (TRV), which generally exceeds the rating of the associated circuit breaker. Simulations were performed to compare the characteristics of a saturated core High-Temperature Superconducting Fault Current Limiter (HTS FCL) and a series reactor. The design of the HTS FCL was optimized using the evolutionary algorithm. The resulting Pareto frontier curve of optimum solution is presented in this paper. The results show that the steady-state impedance of an HTS FCL is significantly lower than that of a series reactor for the same level of fault current limiting. Tests performed on a prototype 11 kV HTS FCL confirm the theoretical results. The respective transient recovery voltages (TRV) of the HTS FCL and an air core reactor of comparable fault current limiting capability are also determined. The results show that the saturated core HTS FCL has a significantly lower effect on the rate of rise of the circuit breaker TRV as compared to the air core reactor. The simulations results are validated with shortcircuit test results.
Resumo:
Irradiance profile around the receiver tube (RT) of a parabolic trough collector (PTC) is a key effect of optical performance that affects the overall energy performance of the collector. Thermal performance evaluation of the RT relies on the appropriate determination of the irradiance profile. This article explains a technique in which empirical equations were developed to calculate the local irradiance as a function of angular location of the RT of a standard PTC using a vigorously verified Monte Carlo ray tracing model. A large range of test conditions including daily normal insolation, spectral selective coatings and glass envelop conditions were selected from the published data by Dudley et al. [1] for the job. The R2 values of the equations are excellent that vary in between 0.9857 and 0.9999. Therefore, these equations can be used confidently to produce realistic non-uniform boundary heat flux profile around the RT at normal incidence for conjugate heat transfer analyses of the collector. Required values in the equations are daily normal insolation, and the spectral selective properties of the collector components. Since the equations are polynomial functions, data processing software can be employed to calculate the flux profile very easily and quickly. The ultimate goal of this research is to make the concentrating solar power technology cost competitive with conventional energy technology facilitating its ongoing research.