927 resultados para Controladores PID
Resumo:
Tesis (Doctor en Ingeniería de Materiales) UANL, 2013.
Resumo:
Con el propósito de consolidar una cultura de planeación, gestión organizacional y evaluación permanente que le permita a la Universidad continuar en su proceso de modernización y direccionar sus esfuerzos hacia el cumplimiento de la misión institucional, y dando continuidad a los procesos de planeación emprendidos en la década de los 90, desde el año 2002 se inició el proceso de definición de un plan integral de desarrollo que respondiera a las necesidades del momento y que al mismo tiempo proyectara la Universidad en el futuro. Desde esta perspectiva, el Plan Integral de Desarrollo 2004-2015 (PID 2004-2015) permitió actualizar la visión de la Universidad proyectada al año 2015 e identificar los ejes estratégicos y de apoyo, así como los programas y subprogramas de acción orientados al cumplimiento de dicha visión. Esta dinámica, además de fomentar la participación de todos los actores de la comunidad rosarista, posibilitó la alineación estratégica frente al Plan.
Resumo:
Resumen basado en el de la publicaci??n
Resumo:
Flat Phase PID Controllers have the property that the phase of the transfer function round the associated feedback loop is constant or flat around the design frequency, with the aim that the phase margin and overshoot to a step response is unaffected when the gain of the device under control changes. Such designs have been achieved using Bode Integrals and by ensuring the phase is the same at two frequencies. This paper extends the ‘two frequency’ controller and describes a novel three frequency controller. The different design strategies arc compared.
Resumo:
This paper considers PID control in terms of its implementation by means of an ARMA plant model. Two controller actions are considered, namely pole placement and deadbeat, both being applied via a PID structure for the adaptive real-time control of an industrial level system. As well as looking at two controller types separately, a comparison is made between the forms and it is shown how, under certain circumstances, the two forms can be seen to be identical. It is shown how the pole-placement PID form does not in fact realise an action which is equivalent to the deadbeat controller, when all closed-loop poles are chosen to be at the origin of the z-plane.
Resumo:
This paper discusses the application of model reference adaptive control concepts to the automatic tuning of PID controllers. The effectiveness of the proposed method is shown through simulated applications. The gradient approach and simulated examples are provided.
Resumo:
This paper describes the application of artificial neural networks for automatic tuning of PID controllers using the Model Reference Adaptive Control approach. The effectiveness of the proposed method is shown through a simulated application.
Resumo:
A neural network was used to map three PID operating regions for a two-input two-output steam generator system. The network was used in stand alone feedforward operation to control the whole operating range of the process, after being trained from the PID controllers corresponding to each control region. The network inputs are the plant error signals, their integral, their derivative and a 4-error delay train.
Resumo:
The paper describes a self-tuning adaptive PID controller suitable for use in the control of robotic manipulators. The scheme employs a simple recursive estimator which reduces the computational effort to an acceptable level for many applications in robotics.
Resumo:
A three degrees of freedom industrial robot is controlled by applying PID self-tuning (PID/ST) controllers. This control is considered as a corrective term to a nominal value, centrally computed from an inaccurate and/ or simplified dynamic model. An identification scheme on an assumed linear plant describing the deviation from the desired trajectory is employed in order to tune the controller coefficients and thus accomplish a behaviour prescribed through a desired pole placement. A salient feature of our approach is the decentralized nature of the controllers producing the corrective term for each joint. This opens the way to practical implementation, as recent computing requirement calculations for similar set-ups have shown in the literature. Numerical results are presented.
Resumo:
In this paper, a new model-based proportional–integral–derivative (PID) tuning and controller approach is introduced for Hammerstein systems that are identified on the basis of the observational input/output data. The nonlinear static function in the Hammerstein system is modelled using a B-spline neural network. The control signal is composed of a PID controller, together with a correction term. Both the parameters in the PID controller and the correction term are optimized on the basis of minimizing the multistep ahead prediction errors. In order to update the control signal, the multistep ahead predictions of the Hammerstein system based on B-spline neural networks and the associated Jacobian matrix are calculated using the de Boor algorithms, including both the functional and derivative recursions. Numerical examples are utilized to demonstrate the efficacy of the proposed approaches.
Resumo:
A new PID tuning and controller approach is introduced for Hammerstein systems based on input/output data. A B-spline neural network is used to model the nonlinear static function in the Hammerstein system. The control signal is composed of a PID controller together with a correction term. In order to update the control signal, the multistep ahead predictions of the Hammerstein system based on the B-spline neural networks and the associated Jacobians matrix are calculated using the De Boor algorithms including both the functional and derivative recursions. A numerical example is utilized to demonstrate the efficacy of the proposed approaches.