964 resultados para Continuous emission monitoring


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The natural phytoplankton was monitored by means of fluorimetric equipment in Vostok Bay of the Sea of Japan. A gradual increase in the microalgae abundance was revealed in the course of the main water current, which enters the bay and leaves it. The continuous registration of chlorophyll fluorescence at a fixed point in the bay indicates the significant microscale variation of the abundance and functional state of the phytoplankton.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work evaluates a spline-based smoothing method applied to the output of a glucose predictor. Methods:Our on-line prediction algorithm is based on a neural network model (NNM). We trained/validated the NNM with a prediction horizon of 30 minutes using 39/54 profiles of patients monitored with the Guardian® Real-Time continuous glucose monitoring system The NNM output is smoothed by fitting a causal cubic spline. The assessment parameters are the error (RMSE), mean delay (MD) and the high-frequency noise (HFCrms). The HFCrms is the root-mean-square values of the high-frequency components isolated with a zero-delay non-causal filter. HFCrms is 2.90±1.37 (mg/dl) for the original profiles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La diabetes mellitus es el conjunto de alteraciones provocadas por un defecto en la cantidad de insulina secretada o por un aprovechamiento deficiente de la misma. Es causa directa de complicaciones a corto, medio y largo plazo que disminuyen la calidad y las expectativas de vida de las personas con diabetes. La diabetes mellitus es en la actualidad uno de los problemas más importantes de salud. Ha triplicado su prevalencia en los últimos 20 anos y para el año 2025 se espera que existan casi 300 millones de personas con diabetes. Este aumento de la prevalencia junto con la morbi-mortalidad asociada a sus complicaciones micro y macro-vasculares convierten la diabetes en una carga para los sistemas sanitarios, sus recursos económicos y sus profesionales, haciendo de la enfermedad un problema individual y de salud pública de enormes proporciones. De momento no existe cura a esta enfermedad, de modo que el objetivo terapéutico del tratamiento de la diabetes se centra en la normalización de la glucemia intentando minimizar los eventos de hiper e hipoglucemia y evitando la aparición o al menos retrasando la evolución de las complicaciones vasculares, que constituyen la principal causa de morbi-mortalidad de las personas con diabetes. Un adecuado control diabetológico implica un tratamiento individualizado que considere multitud de factores para cada paciente (edad, actividad física, hábitos alimentarios, presencia de complicaciones asociadas o no a la diabetes, factores culturales, etc.). Sin embargo, a corto plazo, las dos variables más influyentes que el paciente ha de manejar para intervenir sobre su nivel glucémico son la insulina administrada y la dieta. Ambas presentan un retardo entre el momento de su aplicación y el comienzo de su acción, asociado a la absorción de los mismos. Por este motivo la capacidad de predecir la evolución del perfil glucémico en un futuro cercano, ayudara al paciente a tomar las decisiones adecuadas para mantener un buen control de su enfermedad y evitar situaciones de riesgo. Este es el objetivo de la predicción en diabetes: adelantar la evolución del perfil glucémico en un futuro cercano para ayudar al paciente a adaptar su estilo de vida y sus acciones correctoras, con el propósito de que sus niveles de glucemia se aproximen a los de una persona sana, evitando así los síntomas y complicaciones de un mal control. La aparición reciente de los sistemas de monitorización continua de glucosa ha proporcionado nuevas alternativas. La disponibilidad de un registro exhaustivo de las variaciones del perfil glucémico, con un periodo de muestreo de entre uno y cinco minutos, ha favorecido el planteamiento de nuevos modelos que tratan de predecir la glucemia utilizando tan solo las medidas anteriores de glucemia o al menos reduciendo significativamente la información de entrada a los algoritmos. El hecho de requerir menor intervención por parte del paciente, abre nuevas posibilidades de aplicación de los predictores de glucemia, haciéndose viable su uso en tiempo real, como sistemas de ayuda a la decisión, como detectores de situaciones de riesgo o integrados en algoritmos automáticos de control. En esta tesis doctoral se proponen diferentes algoritmos de predicción de glucemia para pacientes con diabetes, basados en la información registrada por un sistema de monitorización continua de glucosa así como incorporando la información de la insulina administrada y la ingesta de carbohidratos. Los algoritmos propuestos han sido evaluados en simulación y utilizando datos de pacientes registrados en diferentes estudios clínicos. Para ello se ha desarrollado una amplia metodología, que trata de caracterizar las prestaciones de los modelos de predicción desde todos los puntos de vista: precisión, retardo, ruido y capacidad de detección de situaciones de riesgo. Se han desarrollado las herramientas de simulación necesarias y se han analizado y preparado las bases de datos de pacientes. También se ha probado uno de los algoritmos propuestos para comprobar la validez de la predicción en tiempo real en un escenario clínico. Se han desarrollado las herramientas que han permitido llevar a cabo el protocolo experimental definido, en el que el paciente consulta la predicción bajo demanda y tiene el control sobre las variables metabólicas. Este experimento ha permitido valorar el impacto sobre el control glucémico del uso de la predicción de glucosa. ABSTRACT Diabetes mellitus is the set of alterations caused by a defect in the amount of secreted insulin or a suboptimal use of insulin. It causes complications in the short, medium and long term that affect the quality of life and reduce the life expectancy of people with diabetes. Diabetes mellitus is currently one of the most important health problems. Prevalence has tripled in the past 20 years and estimations point out that it will affect almost 300 million people by 2025. Due to this increased prevalence, as well as to morbidity and mortality associated with micro- and macrovascular complications, diabetes has become a burden on health systems, their financial resources and their professionals, thus making the disease a major individual and a public health problem. There is currently no cure for this disease, so that the therapeutic goal of diabetes treatment focuses on normalizing blood glucose events. The aim is to minimize hyper- and hypoglycemia and to avoid, or at least to delay, the appearance and development of vascular complications, which are the main cause of morbidity and mortality among people with diabetes. A suitable, individualized and controlled treatment for diabetes involves many factors that need to be considered for each patient: age, physical activity, eating habits, presence of complications related or unrelated to diabetes, cultural factors, etc. However, in the short term, the two most influential variables that the patient has available in order to manage his/her glycemic levels are administered insulin doses and diet. Both suffer from a delay between their time of application and the onset of the action associated with their absorption. Therefore, the ability to predict the evolution of the glycemic profile in the near future could help the patient to make appropriate decisions on how to maintain good control of his/her disease and to avoid risky situations. Hence, the main goal of glucose prediction in diabetes consists of advancing the evolution of glycemic profiles in the near future. This would assist the patient in adapting his/her lifestyle and in taking corrective actions in a way that blood glucose levels approach those of a healthy person, consequently avoiding the symptoms and complications of a poor glucose control. The recent emergence of continuous glucose monitoring systems has provided new alternatives in this field. The availability of continuous records of changes in glycemic profiles (with a sampling period of one or five minutes) has enabled the design of new models which seek to predict blood glucose by using automatically read glucose measurements only (or at least, reducing significantly the data input manually to the algorithms). By requiring less intervention by the patient, new possibilities are open for the application of glucose predictors, making its use feasible in real-time applications, such as: decision support systems, hypo- and hyperglycemia detectors, integration into automated control algorithms, etc. In this thesis, different glucose prediction algorithms are proposed for patients with diabetes. These are based on information recorded by a continuous glucose monitoring system and incorporate information of the administered insulin and carbohydrate intakes. The proposed algorithms have been evaluated in-silico and using patients’ data recorded in different clinical trials. A complete methodology has been developed to characterize the performance of predictive models from all points of view: accuracy, delay, noise and ability to detect hypo- and hyperglycemia. In addition, simulation tools and patient databases have been deployed. One of the proposed algorithms has additionally been evaluated in terms of real-time prediction performance in a clinical scenario in which the patient checked his/her glucose predictions on demand and he/she had control on his/her metabolic variables. This has allowed assessing the impact of using glucose prediction on glycemic control. The tools to carry out the defined experimental protocols were also developed in this thesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lowering glucose levels, while avoiding hypoglycaemia, can be challenging in insulin-treated patients with diabetes. We evaluated the role of ambulatory glucose profile in optimising glycaemic control in this population. Insulin-treated patients with type 1 and type 2 diabetes were recruited into a prospective, multicentre, 100-day study and randomised to control (n = 28) or intervention (n = 59) groups. The intervention group used ambulatory glucose profile, generated by continuous glucose monitoring, to assess daily glucose levels, whereas the controls relied on capillary glucose testing. Patients were reviewed at days 30 and 45 by the health care professional to adjust insulin therapy. Comparing first and last 2 weeks of the study, ambulatory glucose profile-monitored type 2 diabetes patients (n = 28) showed increased time in euglycaemia (mean ± standard deviation) by 1.4 ± 3.5 h/day (p = 0.0427) associated with reduction in HbA1c from 77 ± 15 to 67 ± 13 mmol/mol (p = 0.0002) without increased hypoglycaemia. Type 1 diabetes patients (n = 25) showed reduction in hypoglycaemia from 1.4 ± 1.7 to 0.8 ± 0.8 h/day (p = 0.0472) associated with a marginal HbA1c decrease from 75 ± 10 to 72 ± 8 mmol/mol (p = 0.0508). Largely similar findings were observed comparing intervention and control groups at end of study. In conclusion, ambulatory glucose profile helps glycaemic management in insulin-treated diabetes patients by increasing time spent in euglycaemia and decreasing HbA1c in type 2 diabetes patients, while reducing hypoglycaemia in type 1 diabetes patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aim: To examine the relationship between electrographic seizures and long-term outcome in neonates with hypoxic-ischemic encephalopathy (HIE). Method: Full-term neonates with HIE born in Cork University Maternity Hospital from 2003 to 2006 (pre-hypothermia era) and 2009 to 2012 (hypothermia era) were included in this observational study. All had early continuous electroencephalography monitoring. All electrographic seizures were annotated. The total seizure burden and hourly seizure burden were calculated. Outcome (normal/abnormal) was assessed at 24 to 48 months in surviving neonates using either the Bayley Scales of Infant and Toddler Development, Third Edition or the Griffiths Mental Development Scales; a diagnosis of cerebral palsy or epilepsy was also considered an abnormal outcome. Results: Continuous electroencephalography was recorded for a median of 57.1 hours (interquartile range 33.5-80.5h) in 47 neonates (31 males, 16 females); 29 out of 47 (62%) had electrographic seizures and 25 out of 47 (53%) had an abnormal outcome. The presence of seizures per se was not associated with abnormal outcome (p=0.126); however, the odds of an abnormal outcome increased over ninefold (odds ratio [OR] 9.56; 95% confidence interval [95% CI] 2.43-37.67) if a neonate had a total seizure burden of more than 40 minutes (p=0.001), and eightfold (OR: 8.00; 95% CI: 2.06-31.07) if a neonate had a maximum hourly seizure burden of more than 13 minutes per hour (p=0.003). Controlling for electrographic HIE grade or treatment with hypothermia did not change the direction of the relationship between seizure burden and outcome. Interpretation: In HIE, a high electrographic seizure burden is significantly associated with abnormal outcome, independent of HIE severity or treatment with hypothermia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Poor sleep is increasingly being recognised as an important prognostic parameter of health. For those with suspected sleep disorders, patients are referred to sleep clinics which guide treatment. However, sleep clinics are not always a viable option due to their high cost, a lack of experienced practitioners, lengthy waiting lists and an unrepresentative sleeping environment. A home-based non-contact sleep/wake monitoring system may be used as a guide for treatment potentially stratifying patients by clinical need or highlighting longitudinal changes in sleep and nocturnal patterns. This paper presents the evaluation of an under-mattress sleep monitoring system for non-contact sleep/wake discrimination. A large dataset of sensor data with concomitant sleep/wake state was collected from both younger and older adults participating in a circadian sleep study. A thorough training/testing/validation procedure was configured and optimised feature extraction and sleep/wake discrimination algorithms evaluated both within and across the two cohorts. An accuracy, sensitivity and specificity of 74.3%, 95.5%, and 53.2% is reported over all subjects using an external validation
dataset (71.9%, 87.9% and 56%, and 77.5%, 98% and 57% is reported for younger and older subjects respectively). These results compare favourably with similar research, however this system provides an ambient alternative suitable for long term continuous sleep monitoring, particularly amongst vulnerable populations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A quantificação do material sólido transportado (transporte sólido) ao longo de um curso de água é extremamente importante nas mais variadas áreas da engenharia fluvial. O transporte sólido em rios de montanha dá-se maioritariamente por arrastamento no fundo, através de deslizamento, rolamento e saltação dos sedimentos. Ao longo dos tempos foram desenvolvidas várias fórmulas para estimar o transporte sólido por arrastamento, contudo, devido à complexidade dos processos de transporte de sedimentos, bem como a variabilidade espacial e temporal, a previsão de taxas de transporte não foi conseguida exclusivamente através de investigação teórica. Para obter um melhor conhecimento sobre os processos de transporte sólido por arrastamento em rios de montanha, torna-se necessário monitorizá-los com maior precisão possível. Com os avanços na electrónica, novos métodos tecnológicos foram desenvolvidos para resolver a problemática da quantificação do transporte sólido, em detrimento dos atuais métodos tradicionais, que se baseiam na recolha de amostras em campo, para posterior correlação. O objetivo principal da presente dissertação foi o desenvolvimento de um equipamento capaz de estimar/monitorizar continuamente o transporte sólido por arrastamento em rios de montanha, que utilizasse tecnologia de baixo custo. Este equipamento dispõe de um sensor piezolelétrico que realizará medições à vibração causada pelo embate dos sedimentos sobre uma chapa metálica. A energia do sinal resultante dos impactos reverterá em peso. A metodologia usada para a obtenção das medições foi a realização de ensaios laboratoriais, tendo sido dado especial destaque à influência da variação do caudal, bem como da forma dos sedimentos, na intensidade do sinal adquirido.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis describes two separate projects. The first is a theoretical and experimental investigation of surface acoustic wave streaming in microfluidics. The second is the development of a novel acoustic glucose sensor. A separate abstract is given for each here. Optimization of acoustic streaming in microfluidic channels by SAWs Surface Acoustic Waves, (SAWs) actuated on flat piezoelectric substrates constitute a convenient and versatile tool for microfluidic manipulation due to the easy and versatile interfacing with microfluidic droplets and channels. The acoustic streaming effect can be exploited to drive fast streaming and pumping of fluids in microchannels and droplets (Shilton et al. 2014; Schmid et al. 2011), as well as size dependant sorting of particles in centrifugal flows and vortices (Franke et al. 2009; Rogers et al. 2010). Although the theory describing acoustic streaming by SAWs is well understood, very little attention has been paid to the optimisation of SAW streaming by the correct selection of frequency. In this thesis a finite element simulation of the fluid streaming in a microfluidic chamber due to a SAW beam was constructed and verified against micro-PIV measurements of the fluid flow in a fabricated device. It was found that there is an optimum frequency that generates the fastest streaming dependent on the height and width of the chamber. It is hoped this will serve as a design tool for those who want to optimally match SAW frequency with a particular microfluidic design. An acoustic glucose sensor Diabetes mellitus is a disease characterised by an inability to properly regulate blood glucose levels. In order to keep glucose levels under control some diabetics require regular injections of insulin. Continuous monitoring of glucose has been demonstrated to improve the management of diabetes (Zick et al. 2007; Heinemann & DeVries 2014), however there is a low patient uptake of continuous glucose monitoring systems due to the invasive nature of the current technology (Ramchandani et al. 2011). In this thesis a novel way of monitoring glucose levels is proposed which would use ultrasonic waves to ‘read’ a subcutaneous glucose sensitive-implant, which is only minimally invasive. The implant is an acoustic analogy of a Bragg stack with a ‘defect’ layer that acts as the sensing layer. A numerical study was performed on how the physical changes in the sensing layer can be deduced by monitoring the reflection amplitude spectrum of ultrasonic waves reflected from the implant. Coupled modes between the skin and the sensing layer were found to be a potential source of error and drift in the measurement. It was found that by increasing the number of layers in the stack that this could be minimized. A laboratory proof of concept system was developed using a glucose sensitive hydrogel as the sensing layer. It was possible to monitor the changing thickness and speed of sound of the hydrogel due to physiological relevant changes in glucose concentration.