941 resultados para Constant hysteresis
Resumo:
The force constants of H2 and Li2 are evaluated employing their extended Hartree-Fock wavefunctions by a polynomial fit of their force curves. It is suggested that, based on incomplete multiconfiguration Hartree-Fock wavefunctions, force constants calculated from the energy derivatives are numerically more accurate than those obtained from the derivatives of the Hellmann-Feynman forces. It is observed that electrons relax during the nuclear vibrations in such a fashion as to facilitate the nuclear motions.
Resumo:
A three-terminal capacitance bridge is developed for the measurement of the dielectric constant of lossy liquids. Using this modified ratio transformer bridge, the capacitance shunted by a resistance as low as 50 Omega is measured at 10 kHz. The capacitance error associated with the inductance of the connecting wire is compensated using the novel method of introducing an additional transformer to the existing ratio transformer bridge. Other sources of capacitance errors, such as the non-zero output impedence of the ratio transformer and the shield capacitances of the cables, are discussed.
Resumo:
The authors study the hysteretic response of model spin systems to periodic time-varying fields H(t) as a function of the amplitude H0 and the frequency Omega . At fixed H0, they find conventional, squarish hysteresis loops at low Omega , and rounded, roughly elliptical loops at high Omega , in agreement with experiment. For the O(N to infinity ), d=3, ( Phi 2)2 model with Langevin dynamics, they find a novel scaling behaviour for the area A of the hysteresis loop, of the form (valid for low fields) A approximately=H0066 Omega 0.33.
Resumo:
Multilayers of Pb(Mg1/3Nb2/3)O-3 (PMN)-PbTiO3 (PT) were deposited through pulsed laser ablation deposition with different periodicities (d=10, 20, 30, 40, 50, 60, and 70 nm) for a constant total thickness of the film. The presence of superlattice reflections in the x-ray diffraction pattern clearly showed the superlattice behavior of the fabricated structures over a periodicity range of 20-50 nm. Polarization hysteresis and the capacitance-voltage characteristics of these films show clear size dependent ferroelectric and antiferroelectric (AFE) characteristics. Presence of long-range coupling and strain in multilayers with lower periodicity (similar to 10 nm) exhibited a clear ferroelectric behavior similar to a solid solution of PMN and PT. Multilayers with higher periodicities (20-50 nm) exhibited antiferroelectric behavior, which could be understood from the energy arguments. On further increase of periodicity, they again exhibit ferroelectric behavior. The polarization studies were carried out beyond the Curie temperature T-c of PMN to understand the interlayer interaction. The interaction is changed to a ferroelectric-paraelectric interlayer and tends to lose its antiferroelectric behavior. The behavior of remnant polarization P-r and dP(r)/dT with temperature clearly proves that the AFE coupling of these superlattices is due to the extrinsic interfacial coupling and not an intrinsic interaction as in a homogeneous conventional AFE material. The evidence of an averaged behavior at a periodicity of similar to 10 nm, and the behavior of individual materials at larger periodicities were further confirmed through dielectric phase transition studies. The presence of AFE interfacial coupling was insignificant over the dielectric phase transition of the multilayers.
Resumo:
Ex-situ grown thin films of SrBi2Nb2O9 (SBN) were deposited on platinum substrates using laser ablation technique. A low substrate-temperature-processing route was chosen to avoid any diffusion of bismuth into the Pt electrode. It was observed that the as grown films showed an oriented growth along the 'c'-axis (with zero spontaneous polarization). The as grown films were subsequently annealed to enhance crystallization. Upon annealing, these films transformed into a polycrystalline structure, and exhibited excellent ferroelectric properties. The switching was made to be possible by lowering the thickness without losing the electrically insulating behavior of the films. The hysteresis results showed an excellent square-shaped loop with results (P-r = 4 muC/cm(2) E-c = 90 kV/cm) in good agreement with the earlier reports. The films also exhibited a dielectric constant of 190 and a dissipation factor of 0.02, which showed dispersion at low frequencies. The frequency dispersion was found to obey Jonscher's universal power law relation, and was attributed to the ionic charge hopping process according to earlier reports. The de transport studies indicated an ohmic behavior in the low voltage region, while higher voltages induced a bulk space charge and resulted in non-linear current-voltage dependence.
Resumo:
A theoretical approach has been developed to relate the voltage delay transients of the Mg-MnO2 dry cell observed during discharge by two commonly employed modes, viz., (1) at constant current, and (2) across a constant resistance. The approach has been verified by comparison of experimentally obtained transients with those generated from theory. The method may be used to predict the delay parameters of the Mg-MnO2 dry cell under the two modes of discharge and can, in principle, be extended to lithium batteries.
Resumo:
The isoscalar axial-vector renormalization constant is reevaluated using the QCD sum-rule method. It is found to be substantially different from the anomaly-free octet axial-vector u¯γμγ5+d¯γμγ5-2s¯γμγ5 coupling. Combining this determination with the known values of the isovector coupling GA and the F/D ratio for the octet current, we find the integral of the polarized proton structure function to be Gp=Fgp1(x)dx=0.135, in agreement with recent measurement by the European Muon Collaboration.
Resumo:
Li-doped ZnO thin films (Zn1-xLixO, x=0.05-0.15) were grown by pulsed-laser ablation technique. Highly c-axis-oriented films were obtained at a growth temperature of 500 degrees C. Ferroelectricity in Zn1-xLixO was found from the temperature-dependent dielectric constant and from the polarization hysteresis loop. The transition temperature (T-c) varied from 290 to 330 K as the Li concentration increased from 0.05 to 0.15. It was found that the maximum value of the dielectric constant at T-c is a function of Li concentration. A symmetric increase in memory window with the applied gate voltage is observed for the ferroelectric thin films on a p-type Si substrate. A ferroelectric P-E hysteresis loop was observed for all the compositions. The spontaneous polarization (P-s) and coercive field (E-c) of 0.6 mu C/cm(2) and 45 kV/cm were obtained for Zn0.85Li0.15O thin films. These observations reveal that partial replacement of host Zn by Li ions induces a ferroelectric phase in the wurtzite-ZnO semiconductor. The dc transport studies revealed an Ohmic behavior in the lower-voltage region and space-charge-limited conduction prevailed at higher voltages. The optical constants were evaluated from the transmission spectrum and it was found that Li substitution in ZnO enhances the dielectric constant.
Resumo:
Core-shell CoFe2O4@BaTiO3 nanoparticles and nanotubes have been prepared using a combination of solution processing and high temperature calcination. Both the core-shell nanostructures exhibit magnetic and dielectric hysteresis at room temperature and magnetoelectric effect. The dielectric constant of both the nanocomposites decreases upon application of magnetic field. The core-shell nanoparticles exhibit 1.7% change in magnetocapacitance around 134 K at 1 T, while the core-shell nanotubes show a remarkable 4.5% change in magnetocapacitance around 310 K at 2 T.(C) 2010 American Institute of Physics. [doi:10.1063/1.3478231].
Resumo:
The operation of a stand-alone, as opposed to grid connected generation system, using a slip-ring induction machine as the electrical generator, is considered. In contrast to an alternator, a slip-ring induction machine can run at variable speed and still deliver constant frequency power to loads. This feature enables optimization of the system when the prime mover is inherently variable speed in nature eg. wind turbines, as well as diesel driven systems, where there is scope for economizing on fuel consumption. Experimental results from a system driven by a 44 bhp diesel engine are presented. Operation at subsynchronous as well as super-synchronous speeds is examined. The measurement facilitates the understanding of the system as well as its design.
Resumo:
Five different shaped weirs were designed and pertinent data for their use are given. One of these weir shapes had the least “sharp edge” at the junction of the base weir and “complementary weir.” Two other types of weirs had equal slopes at the junction of the base weir and complementary weir. Another shape, for which neither the indication accuracy was constant nor the slope was equal at the junction of the base weir and complementary weir, was also tested. The results of the four weir shapes hydraulically tested give consistent values for the coefficient of discharge varying between 0.625 to 0.631. The indication accuracies of all the previously designed linear proportional weirs (includig Sutro weir) are neither constant nor unity, as is believed.
Resumo:
A microscopic expression for the frequency and wave vector dependent dielectric constant of a dense dipolar liquid is derived starting from the linear response theory. The new expression properly takes into account the effects of the translational modes in the polarization relaxation. The longitudinal and the transverse components of the dielectric constant show vastly different behavior at the intermediate values of the wave vector k. We find that the microscopic structure of the dense liquid plays an important role at intermediate wave vectors. The continuum model description of the dielectric constant, although appropriate at very small values of wave vector, breaks down completely at the intermediate values of k. Numerical results for the longitudinal and the transverse dielectric constants are obtained by using the direct correlation function from the mean‐spherical approximation for dipolar hard spheres. We show that our results are consistent with all the limiting expressions known for the dielectric function of matter.
Resumo:
The present paper deals with the study of the effects of electron (8 MeV) irradiation on the dielectric and ferroelectric properties of PbZrO3 thin films grown by sol-gel technique. The films were (0.62 mu m thick) subjected to electron irradiation using Microtron accelerator (delivered dose 80, 100, 120 kGy). The films were well crystallized prior to and after electron irradiation. However, local amorphization was observed after irradiation. There is an appreciable change in the dielectric constant after irradiation with different delivered doses. The dielectric loss showed significant frequency dispersion for both unirradiated and electron irradiated films. T (c) was found to shift towards higher temperature with increasing delivered dose. The effect of radiation induced increase of E >'(T) is related to an internal bias field, which is caused by radiation induced charges trapped at grain boundaries. The double butterfly loop is retained even after electron irradiation to the different delivered doses. The broader hysteresis loop seems to be related to radiation induced charges causing an enhanced space charge polarization. Radiation-induced oxygen vacancies do not change the general shape of the AFE hysteresis loop but they increase P (s) of the hysteresis at the electric field forced AFE to FE phase transition. We attribute the changes in the dielectric properties to the structural defects such as oxygen vacancies and radiation induced charges. The shift in T (C), increase in dielectric constant, broader hysteresis loop, and increase in P (r) can be related to radiation induced charges causing space charge polarization. Double butterfly and hysteresis loops were retained indicative of AFE nature of the films.