890 resultados para Configural reasoning
Resumo:
The need to make default assumptions is frequently encountered in reasoning about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non-monotonicity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occuring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Resumo:
When we reason about change over time, causation provides an implicit preference: we prefer sequences of situations in which one situation leads causally to the next, rather than sequences in which one situation follows another at random and without causal connections. In this paper, we explore the problem of temporal reasoning --- reasoning about change over time --- and the crucial role that causation plays in our intuitions. We examine previous approaches to temporal reasoning, and their shortcomings, in light of this analysis. We propose a new system for causal reasoning, motivated action theory, which builds upon causation as a crucial preference creterion. Motivated action theory solves the traditional problems of both forward and backward reasoning, and additionally provides a basis for a new theory of explanation.
Resumo:
How can we insure that knowledge embedded in a program is applied effectively? Traditionally the answer to this question has been sought in different problem solving paradigms and in different approaches to encoding and indexing knowledge. Each of these is useful with a certain variety of problem, but they all share a common problem: they become ineffective in the face of a sufficiently large knowledge base. How then can we make it possible for a system to continue to function in the face of a very large number of plausibly useful chunks of knowledge? In response to this question we propose a framework for viewing issues of knowledge indexing and retrieval, a framework that includes what appears to be a useful perspective on the concept of a strategy. We view strategies as a means of controlling invocation in situations where traditional selection mechanisms become ineffective. We examine ways to effect such control, and describe meta-rules, a means of specifying strategies which offers a number of advantages. We consider at some length how and when it is useful to reason about control, and explore the advantages meta-rules offer for doing this.
Resumo:
This report describes a paradigm for combining associational and causal reasoning to achieve efficient and robust problem-solving behavior. The Generate, Test and Debug (GTD) paradigm generates initial hypotheses using associational (heuristic) rules. The tester verifies hypotheses, supplying the debugger with causal explanations for bugs found if the test fails. The debugger uses domain-independent causal reasoning techniques to repair hypotheses, analyzing domain models and the causal explanations produced by the tester to determine how to replace faulty assumptions made by the generator. We analyze the strengths and weaknesses of associational and causal reasoning techniques, and present a theory of debugging plans and interpretations. The GTD paradigm has been implemented and tested in the domains of geologic interpretation, the blocks world, and Tower of Hanoi problems.
Resumo:
Reasoning about motion is an important part of our commonsense knowledge, involving fluent spatial reasoning. This work studies the qualitative and geometric knowledge required to reason in a world that consists of balls moving through space constrained by collisions with surfaces, including dissipative forces and multiple moving objects. An analog geometry representation serves the program as a diagram, allowing many spatial questions to be answered by numeric calculation. It also provides the foundation for the construction and use of place vocabulary, the symbolic descriptions of space required to do qualitative reasoning about motion in the domain. The actual motion of a ball is described as a network consisting of descriptions of qualitatively distinct types of motion. Implementing the elements of these networks in a constraint language allows the same elements to be used for both analysis and simulation of motion. A qualitative description of the actual motion is also used to check the consistency of assumptions about motion. A process of qualitative simulation is used to describe the kinds of motion possible from some state. The ambiguity inherent in such a description can be reduced by assumptions about physical properties of the ball or assumptions about its motion. Each assumption directly rules out some kinds of motion, but other knowledge is required to determine the indirect consequences of making these assumptions. Some of this knowledge is domain dependent and relies heavily on spatial descriptions.
Resumo:
Geologic interpretation is the task of inferring a sequence of events to explain how a given geologic region could have been formed. This report describes the design and implementation of one part of a geologic interpretation problem solver -- a system which uses a simulation technique called imagining to check the validity of a candidate sequence of events. Imagining uses a combination of qualitative and quantitative simulations to reason about the changes which occured to the geologic region. The spatial changes which occur are simulated by constructing a sequence of diagrams. The quantitative simulation needs numeric parameters which are determined by using the qualitative simulation to establish the cumulative changes to an object and by using a description of the current geologic region to make quantitative measurements. The diversity of reasoning skills used in imagining has necessitated the development of multiple representations, each specialized for a different task. Representations to facilitate doing temporal, spatial and numeric reasoning are described in detail. We have also found it useful to explicitly represent processes. Both the qualitative and quantitative simulations use a discrete 'layer cake' model of geologic processes, but each uses a separate representation, specialized to support the type of simulation. These multiple representations have enabled us to develop a powerful, yet modular, system for reasoning about change.
Resumo:
This report describes a domain independent reasoning system. The system uses a frame-based knowledge representation language and various reasoning techniques including constraint propagation, progressive refinement, natural deduction and explicit control of reasoning. A computational architecture based on active objects which operate by exchanging messages is developed and it is shown how this architecture supports reasoning activity. The user interacts with the system by specifying frames and by giving descriptions defining the problem situation. The system uses its reasoning capacity to build up a model of the problem situation from which a solution can interactively be extracted. Examples are discussed from a variety of domains, including electronic circuits, mechanical devices and music. The main thesis is that a reasoning system is best viewed as a parallel system whose control and data are distributed over a large network of processors that interact by exchanging messages. Such a system will be metaphorically described as a society of communicating experts.
Resumo:
Artificial Intelligence research involves the creation of extremely complex programs which must possess the capability to introspect, learn, and improve their expertise. Any truly intelligent program must be able to create procedures and to modify them as it gathers information from its experience. [Sussman, 1975] produced such a system for a 'mini-world'; but truly intelligent programs must be considerably more complex. A crucial stepping stone in AI research is the development of a system which can understand complex programs well enough to modify them. There is also a complexity barrier in the world of commercial software which is making the cost of software production and maintenance prohibitive. Here too a system which is capable of understanding complex programs is a necessary step. The Programmer's Apprentice Project [Rich and Shrobe, 76] is attempting to develop an interactive programming tool which will help expert programmers deal with the complexity involved in engineering a large software system. This report describes REASON, the deductive component of the programmer's apprentice. REASON is intended to help expert programmers in the process of evolutionary program design. REASON utilizes the engineering techniques of modelling, decomposition, and analysis by inspection to determine how modules interact to achieve the desired overall behavior of a program. REASON coordinates its various sources of knowledge by using a dependency-directed structure which records the justification for each deduction it makes. Once a program has been analyzed these justifications can be summarized into a teleological structure called a plan which helps the system understand the impact of a proposed program modification.
Resumo:
One very useful idea in AI research has been the notion of an explicit model of a problem situation. Procedural deduction languages, such as PLANNER, have been valuable tools for building these models. But PLANNER and its relatives are very limited in their ability to describe situations which are only partially specified. This thesis explores methods of increasing the ability of procedural deduction systems to deal with incomplete knowledge. The thesis examines in detail, problems involving negation, implication, disjunction, quantification, and equality. Control structure issues and the problem of modelling change under incomplete knowledge are also considered. Extensive comparisons are also made with systems for mechanica theorem proving.
Resumo:
This report investigates some techinques appropriate to representing the knowledge necessary for understanding a class of electronic machines -- radio receivers. A computational performance model - WATSON - is presented. WATSONs task is to isolate failures in radio receivers whose principles of operation have been appropriately described in his knowledge base. The thesis of the report is that hierarchically organized representational structures are essential to the understanding of complex mechanisms. Such structures lead not only to descriptions of machine operation at many levels of detail, but also offer a powerful means of organizing "specialist" knowledge for the repair of machines when they are broken.
Resumo:
This thesis presents a theory of human-like reasoning in the general domain of designed physical systems, and in particular, electronic circuits. One aspect of the theory, causal analysis, describes how the behavior of individual components can be combined to explain the behavior of composite systems. Another aspect of the theory, teleological analysis, describes how the notion that the system has a purpose can be used to aid this causal analysis. The theory is implemented as a computer program, which, given a circuit topology, can construct by qualitative causal analysis a mechanism graph describing the functional topology of the system. This functional topology is then parsed by a grammar for common circuit functions. Ambiguities are introduced into the analysis by the approximate qualitative nature of the analysis. For example, there are often several possible mechanisms which might describe the circuit's function. These are disambiguated by teleological analysis. The requirement that each component be assigned an appropriate purpose in the functional topology imposes a severe constraint which eliminates all the ambiguities. Since both analyses are based on heuristics, the chosen mechanism is a rationalization of how the circuit functions, and does not guarantee that the circuit actually does function. This type of coarse understanding of circuits is useful for analysis, design and troubleshooting.
Resumo:
Expert systems are too slow. This work attacks that problem by speeding up a useful system component that remembers facts and tracks down simple consequences. The redesigned component can assimilate new facts more quickly because it uses a compact, grammar-based internal representation to deal with whole classes of equivalent expressions at once. It can support faster hypothetical reasoning because it remembers the consequences of several assumption sets at once. The new design is targeted for situations in which many of the stored facts are equalities. The deductive machinery considered here supplements stored premises with simple new conclusions. The stored premises include permanently asserted facts and temporarily adopted assumptions. The new conclusions are derived by substituting equals for equals and using the properties of the logical connectives AND, Or, and NOT. The deductive system provides supporting premises for its derived conclusions. Reasoning that involves quantifiers is beyond the scope of its limited and automatic operation. The expert system of which the reasoning system is a component is expected to be responsible for overall control of reasoning.
Resumo:
C.J.Price, D.R.Pugh, N.A.Snooke, J.E.Hunt, M.S.Wilson, Combining Functional and Structural Reasoning for Safety Analysis of Electrical Designs, Knowledge Engineering Review, vol 12:3, pp.271-287, 1997.
Resumo:
Lee M.H., Model-Based Reasoning: A Principled Approach for Software Engineering, Software - Concepts and Tools,19(4), pp179-189, 2000.