977 resultados para Condensed Phase Velocity Map Imaging


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using molecular dynamics (MD) simulations, we explore the structural and dynamical properties of siRNA within the intercalated environment of a Mg:Al 2:1 Layered Double Hydroxide (LDH) nanoparticle. An ab initio force field (Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies: COMPASS) is used for the MD simulations of the hybrid organic-inorganic systems. The structure, arrangement, mobility, close contacts and hydrogen bonds associated with the intercalated RNA are examined and contrasted with those of the isolated RNA. Computed powder X-ray diffraction patterns are also compared with related LDH-DNA experiments. As a method of probing whether the intercalated environment approximates the crystalline or rather the aqueous state, we explore the stability of the principle parameters (e.g., the major groove width) that differentiate both A- and A'- crystalline forms of siRNA and contrast this with recent findings for the same siRNA simulated in water. We find the crystalline forms remain structurally distinct when intercalated, whereas this is not the case in water. Implications for the stability of hybrid LDH-RNA systems are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this dissertation is to explore a more accurate and versatile approach to investigating the neutralization of spores suffered from ultrafast heating and biocide based stresses, and further to explore and understand novel methods to supply ultrafast heating and biocides through nanostructured energetic materials A surface heating method was developed to apply accurate (± 25 ˚C), high heating rate thermal energy (200 - 800 ˚C, ~103 - ~105 ˚C/s). Uniform attachment of bacterial spores was achieved electrophoretically onto fine wires in liquids, which could be quantitatively detached into suspension for spore enumeration. The spore inactivation increased with temperature and heating rate, and fit a sigmoid response. The neutralization mechanisms of peak temperature and heating rate were correlated to the DNA damage at ~104 ˚C/s, and to the coat rupture by ultrafast vapor pressurization inside spores at ~105 ˚C/s. Humidity was found to have a synergistic effect of rapid heating and chlorine gas to neutralization efficiency. The primary neutralization mechanism of Cl2 and rapid heat is proposed to be chlorine reacting with the spore surface. The stress-kill correlation above provides guidance to explore new biocidal thermites, and to probe mechanisms. Results show that nano-Al/K2S2O8 released more gas at a lower temperature and generated a higher maximum pressure than the other nano-Al/oxysalts. Given that this thermite formulation generates the similar amount of SO2 as O2, it can be considered as a potential candidate for use in energetic biocidal applications. The reaction mechanisms of persulfate and other oxysalts containing thermites can be divided into two groups, with the reactive thermites (e.g. Al/K2S2O8) that generate ~10× higher of pressure and ~10× shorter of burn time ignited via a solid-gas Al/O2 reaction, while the less reactive thermites (e.g. Al/K2SO4) following a condensed phase Al/O reaction mechanism. These different ignition mechanisms were further re-evaluated by investigating the roles of free and bound oxygen. A constant critical reaction rate for ignition was found which is independent to ignition temperature, heating rate and free vs. bound oxygen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocomposite energetics are a relatively new class of materials that combine nanoscale fuels and oxidizers to allow for the rapid release of large amounts of energy. In thermite systems (metal fuel with metal oxide oxidizer), the use of nanomaterials has been illustrated to increase reactivity by multiple orders of magnitude as a result of the higher specific surface area and smaller diffusion length scales. However, the highly dynamic and nanoscale processes intrinsic to these materials, as well as heating rate dependencies, have limited our understanding of the underlying processes that control reaction and propagation. For my dissertation, I have employed a variety of experimental approaches that have allowed me to probe these processes at heating rates representative of free combustion with the goal of understanding the fundamental mechanisms. Dynamic transmission electron microscopy (DTEM) was used to study the in situ morphological change that occurs in nanocomposite thermite materials subjected to rapid (10^11 K/s) heating. Aluminum nanoparticle (Al-NP) aggregates were found to lose their nanostructure through coalescence in as little as 10 ns, which is much faster than any other timescale of combustion. Further study of nanoscale reaction with CuO determined that a condensed phase interfacial reaction could occur within 0.5-5 µs in a manner consistent with bulk reaction, which supports that this mechanism plays a dominant role in the overall reaction process. Ta nanocomposites were also studied to determine if a high melting point (3280 K) affects the loss of nanostructure and rate of reaction. The condensed phase reaction pathway was further explored using reactive multilayers sputter deposited onto thin Pt wires to allow for temperature jump (T-Jump) heating at rates of ~5x10^5 K/s. High speed video and a time of flight mass spectrometry (TOFMS) were used to observe ignition temperature and speciation as a function of bilayer thickness. The ignition process was modeled and a low activation energy for effective diffusivity was determined. T-Jump TOFMS along with constant volume combustion cell studies were also used to determine the effect of gas release in nanoparticle systems by comparing the reaction properties of CuO and Cu2O.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The predictive capabilities of computational fire models have improved in recent years such that models have become an integral part of many research efforts. Models improve the understanding of the fire risk of materials and may decrease the number of expensive experiments required to assess the fire hazard of a specific material or designed space. A critical component of a predictive fire model is the pyrolysis sub-model that provides a mathematical representation of the rate of gaseous fuel production from condensed phase fuels given a heat flux incident to the material surface. The modern, comprehensive pyrolysis sub-models that are common today require the definition of many model parameters to accurately represent the physical description of materials that are ubiquitous in the built environment. Coupled with the increase in the number of parameters required to accurately represent the pyrolysis of materials is the increasing prevalence in the built environment of engineered composite materials that have never been measured or modeled. The motivation behind this project is to develop a systematic, generalized methodology to determine the requisite parameters to generate pyrolysis models with predictive capabilities for layered composite materials that are common in industrial and commercial applications. This methodology has been applied to four common composites in this work that exhibit a range of material structures and component materials. The methodology utilizes a multi-scale experimental approach in which each test is designed to isolate and determine a specific subset of the parameters required to define a material in the model. Data collected in simultaneous thermogravimetry and differential scanning calorimetry experiments were analyzed to determine the reaction kinetics, thermodynamic properties, and energetics of decomposition for each component of the composite. Data collected in microscale combustion calorimetry experiments were analyzed to determine the heats of complete combustion of the volatiles produced in each reaction. Inverse analyses were conducted on sample temperature data collected in bench-scale tests to determine the thermal transport parameters of each component through degradation. Simulations of quasi-one-dimensional bench-scale gasification tests generated from the resultant models using the ThermaKin modeling environment were compared to experimental data to independently validate the models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objetivo: Evaluar las propiedades psicométricas de los instrumentos para la medición de la actividad física en adultos de 18-65 años con discapacidad física por lesión de médula espinal. Materiales y métodos: Revisión sistemática. Las bases de datos de Medline, Scopus, Web of Science y 19 revistas especializadas fueron consultadas durante once días entre abril de 2015 y febrero de 2016 para identificar estudios originales de validación, sin límite de tiempo y que estuvieran publicados en español, francés y/o inglés. La calidad metodológica de los instrumentos de medición se evaluó usando las diferentes cajas de propiedades de la lista COSMIN. Resultados: Se identificaron 9229 referencias, de las cuales sólo 12 cumplieron los criterios de inclusión, dando como resultado 13 instrumentos de medición. Se evaluaron seis propiedades psicométricas. La propiedad más común fue la confiabilidad, además se observó que la calidad metodológica de los estudios incluidos no representa los resultados de las propiedades psicométricas de los instrumentos de medición. La calidad metodológica de los instrumentos para la evaluación de la actividad física en población con lesión medular espinal es “baja” para propiedades como consistencia interna, error de medición, sensibilidad, validez de criterio (con excepción del WISCI II que tiene buena validez) y excelente para validez de contenido y fiabilidad. Conclusión: Se ha encontrado que instrumentos empleados hasta el presente en la medición de la actividad física en población con discapacidad física relacionada con lesión de médula espinal han sido creados para otros tipos de discapacidad y otros instrumentos deben ser validados en futuros estudios.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Black-blood MR coronary vessel wall imaging may become a powerful tool for the quantitative and noninvasive assessment of atherosclerosis and positive arterial remodeling. Although dual-inversion recovery is currently the gold standard, optimal lumen-to-vessel wall contrast is sometimes difficult to obtain, and the time window available for imaging is limited due to competing requirements between blood signal nulling time and period of minimal myocardial motion. Further, atherosclerosis is a spatially heterogeneous disease, and imaging at multiple anatomic levels of the coronary circulation is mandatory. However, this requirement of enhanced volumetric coverage comes at the expense of scanning time. Phase-sensitive inversion recovery has shown to be very valuable for enhancing tissue-tissue contrast and for making inversion recovery imaging less sensitive to tissue signal nulling time. This work enables multislice black-blood coronary vessel wall imaging in a single breath hold by extending phase-sensitive inversion recovery to phase-sensitive dual-inversion recovery, by combining it with spiral imaging and yet relaxing constraints related to blood signal nulling time and period of minimal myocardial motion.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Micro-scale, two-phase flow is found in a variety of devices such as Lab-on-a-chip, bio-chips, micro-heat exchangers, and fuel cells. Knowledge of the fluid behavior near the dynamic gas-liquid interface is required for developing accurate predictive models. Light is distorted near a curved gas-liquid interface preventing accurate measurement of interfacial shape and internal liquid velocities. This research focused on the development of experimental methods designed to isolate and probe dynamic liquid films and measure velocity fields near a moving gas-liquid interface. A high-speed, reflectance, swept-field confocal (RSFC) imaging system was developed for imaging near curved surfaces. Experimental studies of dynamic gas-liquid interface of micro-scale, two-phase flow were conducted in three phases. Dynamic liquid film thicknesses of segmented, two-phase flow were measured using the RSFC and compared to a classic film thickness deposition model. Flow fields near a steadily moving meniscus were measured using RSFC and particle tracking velocimetry. The RSFC provided high speed imaging near the menisci without distortion caused the gas-liquid interface. Finally, interfacial morphology for internal two-phase flow and droplet evaporation were measured using interferograms produced by the RSFC imaging technique. Each technique can be used independently or simultaneously when.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report near-infrared spectroscopic observations of the Eta Carinae massive binary system during 2008-2009 using the CRIRES spectrograph mounted on the 8m UT 1 Very Large Telescope (VLT Antu). We detect a strong, broad absorption wing in He I lambda 10833 extending up to -1900 km s(-1) across the 2009.0 spectroscopic event. Analysis of archival Hubble Space Telescope/Space Telescope Imaging Spectrograph ultraviolet and optical data identifies a similar high-velocity absorption (up to -2100 km s(-1)) in the ultraviolet resonance lines of Si IV lambda lambda 1394, 1403 across the 2003.5 event. Ultraviolet resonance lines from low-ionization species, such as Si II lambda lambda 1527, 1533 and CII lambda lambda 1334, 1335, show absorption only up to -1200 km s(-1), indicating that the absorption with velocities -1200 to -2100 km s(-1) originates in a region markedly more rapidly moving and more ionized than the nominal wind of the primary star. Seeing-limited observations obtained at the 1.6m OPD/LNA telescope during the last four spectroscopic cycles of Eta Carinae (1989-2009) also show high-velocity absorption in He I lambda 10833 during periastron. Based on the large OPD/LNA dataset, we determine that material with velocities more negative than -900 km s(-1) is present in the phase range 0.976 <= phi <= 1.023 of the spectroscopic cycle, but absent in spectra taken at phi <= 0.947 and phi >= 1.049. Therefore, we constrain the duration of the high-velocity absorption to be 95 to 206 days (or 0.047 to 0.102 in phase). We propose that the high-velocity absorption component originates in shocked gas in the wind-wind collision zone, at distances of 15 to 45 AU in the line-of-sight to the primary star. With the aid of three-dimensional hydrodynamical simulations of the wind-wind collision zone, we find that the dense high-velocity gas is along the line-of-sight to the primary star only if the binary system is oriented in the sky such that the companion is behind the primary star during periastron, corresponding to a longitude of periastron of omega similar to 240 degrees-270 degrees. We study a possible tilt of the orbital plane relative to the Homunculus equatorial plane and conclude that our data are broadly consistent with orbital inclinations in the range i = 40 degrees-60 degrees.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An updated flow pattern map was developed for CO2 on the basis of the previous Cheng-Ribatski-Wojtan-Thome CO2 flow pattern map [1,2] to extend the flow pattern map to a wider range of conditions. A new annular flow to dryout transition (A-D) and a new dryout to mist flow transition (D-M) were proposed here. In addition, a bubbly flow region which generally occurs at high mass velocities and low vapor qualities was added to the updated flow pattern map. The updated flow pattern map is applicable to a much wider range of conditions: tube diameters from 0.6 to 10 mm, mass velocities from 50 to 1500 kg/m(2) s, heat fluxes from 1.8 to 46 kW/m(2) and saturation temperatures from -28 to +25 degrees C (reduced pressures from 0.21 to 0.87). The updated flow pattern map was compared to independent experimental data of flow patterns for CO2 in the literature and it predicts the flow patterns well. Then, a database of CO2 two-phase flow pressure drop results from the literature was set up and the database was compared to the leading empirical pressure drop models: the correlations by Chisholm [3], Friedel [4], Gronnerud [5] and Muller-Steinhagen and Heck [6], a modified Chisholm correlation by Yoon et al. [7] and the flow pattern based model of Moreno Quiben and Thome [8-10]. None of these models was able to predict the CO2 pressure drop data well. Therefore, a new flow pattern based phenomenological model of two-phase flow frictional pressure drop for CO2 was developed by modifying the model of Moreno Quiben and Thome using the updated flow pattern map in this study and it predicts the CO2 pressure drop database quite well overall. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Plant performance is, at least partly, linked to the location of roots with respect to soil structure features and the micro-environment surrounding roots. Measurements of root distributions from intact samples, using optical microscopy and field tracings have been partially successful but are imprecise and labour-intensive. Theoretically, X-ray computed micro-tomography represents an ideal solution for non-invasive imaging of plant roots and soil structure. However, before it becomes fast enough and affordable or easily accessible, there is still a need for a diagnostic tool to investigate root/soil interplay. Here, a method for detection of undisturbed plant roots and their immediate physical environment is presented. X-ray absorption and phase contrast imaging are combined to produce projection images of soil sections from which root distributions and soil structure can be analyzed. The clarity of roots on the X-ray film is sufficient to allow manual tracing on an acetate sheet fixed over the film. In its current version, the method suffers limitations mainly related to (i) the degree of subjectivity associated with manual tracing and (ii) the difficulty of separating live and dead roots. The method represents a simple and relatively inexpensive way to detect and quantify roots from intact samples and has scope for further improvements. In this paper, the main steps of the method, sampling, image acquisition and image processing are documented. The potential use of the method in an agronomic perspective is illustrated using surface and sub-surface soil samples from a controlled wheat trial. Quantitative characterization of root attributes, e.g. radius, length density, branching intensity and the complex interplay between roots and soil structure, is presented and discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new algorithm for the velocity vector estimation of moving ships using Single Look Complex (SLC) SAR data in strip map acquisition mode is proposed. The algorithm exploits both amplitude and phase information of the Doppler decompressed data spectrum, with the aim to estimate both the azimuth antenna pattern and the backscattering coefficient as function of the look angle. The antenna pattern estimation provides information about the target velocity; the backscattering coefficient can be used for vessel classification. The range velocity is retrieved in the slow time frequency domain by estimating the antenna pattern effects induced by the target motion, while the azimuth velocity is calculated by the estimated range velocity and the ship orientation. Finally, the algorithm is tested on simulated SAR SLC data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Different interferometric techniques were developed last decade to obtain full field, quantitative, and absolute phase imaging, such as phase-shifting, Fourier phase microscopy, Hilbert phase microscopy or digital holographic microscopy (DHM). Although, these techniques are very similar, DHM combines several advantages. In contrast, to phase shifting, DHM is indeed capable of single-shot hologram recording allowing a real-time absolute phase imaging. On the other hand, unlike to Fourier phase or Hilbert phase microscopy, DHM does not require to record in focus images of the specimen on the digital detector (CCD or CMOS camera), because a numerical focalization adjustment can be performed by a numerical wavefront propagation. Consequently, the depth of view of high NA microscope objectives is numerically extended. For example, two different biological cells, floating at different depths in a liquid, can be focalized numerically from the same digital hologram. Moreover, the numerical propagation associated to digital optics and automatic fitting procedures, permits vibrations insensitive full- field phase imaging and the complete compensation for a priori any image distortion or/and phase aberrations introduced for example by imperfections of holders or perfusion chamber. Examples of real-time full-field phase images of biological cells have been demonstrated. ©2008 COPYRIGHT SPIE

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Methods are presented to map complex fiber architectures in tissues by imaging the 3D spectra of tissue water diffusion with MR. First, theoretical considerations show why and under what conditions diffusion contrast is positive. Using this result, spin displacement spectra that are conventionally phase-encoded can be accurately reconstructed by a Fourier transform of the measured signal's modulus. Second, studies of in vitro and in vivo samples demonstrate correspondence between the orientational maxima of the diffusion spectrum and those of the fiber orientation density at each location. In specimens with complex muscular tissue, such as the tongue, diffusion spectrum images show characteristic local heterogeneities of fiber architectures, including angular dispersion and intersection. Cerebral diffusion spectra acquired in normal human subjects resolve known white matter tracts and tract intersections. Finally, the relation between the presented model-free imaging technique and other available diffusion MRI schemes is discussed.