912 resultados para Conceptual site models


Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

El aprendizaje basado en problemas se lleva aplicando con éxito durante las últimas tres décadas en un amplio rango de entornos de aprendizaje. Este enfoque educacional consiste en proponer problemas a los estudiantes de forma que puedan aprender sobre un dominio particular mediante el desarrollo de soluciones a dichos problemas. Si esto se aplica al modelado de conocimiento, y en particular al basado en Razonamiento Cualitativo, las soluciones a los problemas pasan a ser modelos que representan el compotamiento del sistema dinámico propuesto. Por lo tanto, la tarea del estudiante en este caso es acercar su modelo inicial (su primer intento de representar el sistema) a los modelos objetivo que proporcionan soluciones al problema, a la vez que adquieren conocimiento sobre el dominio durante el proceso. En esta tesis proponemos KaiSem, un método que usa tecnologías y recursos semánticos para guiar a los estudiantes durante el proceso de modelado, ayudándoles a adquirir tanto conocimiento como sea posible sin la directa supervisión de un profesor. Dado que tanto estudiantes como profesores crean sus modelos de forma independiente, estos tendrán diferentes terminologías y estructuras, dando lugar a un conjunto de modelos altamente heterogéneo. Para lidiar con tal heterogeneidad, proporcionamos una técnica de anclaje semántico para determinar, de forma automática, enlaces entre la terminología libre usada por los estudiantes y algunos vocabularios disponibles en la Web de Datos, facilitando con ello la interoperabilidad y posterior alineación de modelos. Por último, proporcionamos una técnica de feedback semántico para comparar los modelos ya alineados y generar feedback basado en las posibles discrepancias entre ellos. Este feedback es comunicado en forma de sugerencias individualizadas que el estudiante puede utilizar para acercar su modelo a los modelos objetivos en cuanto a su terminología y estructura se refiere. ABSTRACT Problem-based learning has been successfully applied over the last three decades to a diverse range of learning environments. This educational approach consists of posing problems to learners, so they can learn about a particular domain by developing solutions to them. When applied to conceptual modeling, and particularly to Qualitative Reasoning, the solutions to problems are models that represent the behavior of a dynamic system. Therefore, the learner's task is to move from their initial model, as their first attempt to represent the system, to the target models that provide solutions to that problem while acquiring domain knowledge in the process. In this thesis we propose KaiSem, a method for using semantic technologies and resources to scaffold the modeling process, helping the learners to acquire as much domain knowledge as possible without direct supervision from the teacher. Since learners and experts create their models independently, these will have different terminologies and structure, giving rise to a pool of models highly heterogeneous. To deal with such heterogeneity, we provide a semantic grounding technique to automatically determine links between the unrestricted terminology used by learners and some online vocabularies of the Web of Data, thus facilitating the interoperability and later alignment of the models. Lastly, we provide a semantic-based feedback technique to compare the aligned models and generate feedback based on the possible discrepancies. This feedback is communicated in the form of individualized suggestions, which can be used by the learner to bring their model closer in terminology and structure to the target models.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The performance of intermolecular potential models on the adsorption of carbon tetrachloride on graphitized thermal carbon black at various temperatures is investigated. This is made possible with the extensive experimental data of Machin and Ross(1), Avgul et al.,(2) and Pierce(3) that cover a wide range of temperatures. The description of all experimental data is only possible with the allowance for the surface mediation. If this were ignored, the grand canonical Monte Carlo (GCMC) simulation results would predict a two-dimensional (2D) transition even at high temperatures, while experimental data shows gradual change in adsorption density with pressure. In general, we find that the intermolecular interaction has to be reduced by 4% whenever particles are within the first layer close to the surface. We also find that this degree of surface mediation is independent of temperature. To understand the packing of carbon tetrachloride in slit pores, we compared the performance of the potential models that model carbon tetrachloride as either five interaction sites or one site. It was found that the five-site model performs better and describes the imperfect packing in small pores better. This is so because most of the strength of fluid-fluid interaction between two carbon tetrachloride molecules comes from the interactions among chlorine atoms. Methane, although having tetrahedral shape as carbon tetrachloride, can be effectively modeled as a pseudospherical particle because most of the interactions come from carbon-carbon interaction and hydrogen negligibly contributes to this.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Quantitatively predicting mass transport rates for chemical mixtures in porous materials is important in applications of materials such as adsorbents, membranes, and catalysts. Because directly assessing mixture transport experimentally is challenging, theoretical models that can predict mixture diffusion coefficients using Only single-component information would have many uses. One such model was proposed by Skoulidas, Sholl, and Krishna (Langmuir, 2003, 19, 7977), and applications of this model to a variety of chemical mixtures in nanoporous materials have yielded promising results. In this paper, the accuracy of this model for predicting mixture diffusion coefficients in materials that exhibit a heterogeneous distribution of local binding energies is examined. To examine this issue, single-component and binary mixture diffusion coefficients are computed using kinetic Monte Carlo for a two-dimensional lattice model over a wide range of lattice occupancies and compositions. The approach suggested by Skoulidas, Sholl, and Krishna is found to be accurate in situations where the spatial distribution of binding site energies is relatively homogeneous, but is considerably less accurate for strongly heterogeneous energy distributions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The soil-plant-moisture subsystem is an important component of the hydrological cycle. Over the last 20 or so years a number of computer models of varying complexity have represented this subsystem with differing degrees of success. The aim of this present work has been to improve and extend an existing model. The new model is less site specific thus allowing for the simulation of a wide range of soil types and profiles. Several processes, not included in the original model, are simulated by the inclusion of new algorithms, including: macropore flow; hysteresis and plant growth. Changes have also been made to the infiltration, water uptake and water flow algorithms. Using field data from various sources, regression equations have been derived which relate parameters in the suction-conductivity-moisture content relationships to easily measured soil properties such as particle-size distribution data. Independent tests have been performed on laboratory data produced by Hedges (1989). The parameters found by regression for the suction relationships were then used in equations describing the infiltration and macropore processes. An extensive literature review produced a new model for calculating plant growth from actual transpiration, which was itself partly determined by the root densities and leaf area indices derived by the plant growth model. The new infiltration model uses intensity/duration curves to disaggregate daily rainfall inputs into hourly amounts. The final model has been calibrated and tested against field data, and its performance compared to that of the original model. Simulations have also been carried out to investigate the effects of various parameters on infiltration, macropore flow, actual transpiration and plant growth. Qualitatively comparisons have been made between these results and data given in the literature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The conceptual foundations of the models and procedures for prediction of the avalanche-dangerous situations initiation are considered. The interpretation model for analysis of the avalanche-dangerous situations initiation based on the definition of probabilities of correspondence of studied parameters to the probabilistic distributions of avalanche-dangerous or avalanche non-dangerous situations is offered. The possibility to apply such a model to the real data is considered. The main approaches to the use of multiple representations for the avalanche dangerous situations initiation analysis are generalized.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent studies suggest that coastal ecosystems can bury significantly more C than tropical forests, indicating that continued coastal development and exposure to sea level rise and storms will have global biogeochemical consequences. The Florida Coastal Everglades Long Term Ecological Research (FCE LTER) site provides an excellent subtropical system for examining carbon (C) balance because of its exposure to historical changes in freshwater distribution and sea level rise and its history of significant long-term carbon-cycling studies. FCE LTER scientists used net ecosystem C balance and net ecosystem exchange data to estimate C budgets for riverine mangrove, freshwater marsh, and seagrass meadows, providing insights into the magnitude of C accumulation and lateral aquatic C transport. Rates of net C production in the riverine mangrove forest exceeded those reported for many tropical systems, including terrestrial forests, but there are considerable uncertainties around those estimates due to the high potential for gain and loss of C through aquatic fluxes. C production was approximately balanced between gain and loss in Everglades marshes; however, the contribution of periphyton increases uncertainty in these estimates. Moreover, while the approaches used for these initial estimates were informative, a resolved approach for addressing areas of uncertainty is critically needed for coastal wetland ecosystems. Once resolved, these C balance estimates, in conjunction with an understanding of drivers and key ecosystem feedbacks, can inform cross-system studies of ecosystem response to long-term changes in climate, hydrologic management, and other land use along coastlines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Process modeling can be regarded as the currently most popular form of conceptual modeling. Research evidence illustrates how process modeling is applied across the different information system life cycle phases for a range of different applications, such as configuration of Enterprise Systems, workflow management, or software development. However, a detailed discussion of critical factors of the quality of process models is still missing. This paper proposes a framework consisting of six quality factors, which is derived from a comprehensive literature review. It then presents in a case study, a utility provider, who had designed various business process models for the selection of an Enterprise System. The paper summarizes potential means of conducting a successful process modeling initiative and evaluates the described modeling approach within the Guidelines of Modeling (GoM) framework. An outlook shows the potential lessons learnt, and concludes with insights to the next phases of this study.

Relevância:

30.00% 30.00%

Publicador: