922 resultados para Computer Security


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Josué Sallent, Director del Centre de Seguretat de la Informació de Catalunya, CESICAT, parla de la seguretat des del punt de vista de l'administració autonòmica

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lluís Ariño, miembro del Grupo de Administración Electrònica de la Conferencia de Rectores de las Universidades Españolas (CRUE), presenta la seguridad desde el punto de vista de la administración universitaria

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciência da Computação - IBILCE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciência da Computação - IBILCE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El Malware es una grave amenaza para la seguridad de los sistemas. Con el uso generalizado de la World Wide Web, ha habido un enorme aumento en los ataques de virus, haciendo que la seguridad informática sea esencial para todas las computadoras y se expandan las áreas de investigación sobre los nuevos incidentes que se generan, siendo una de éstas la clasificación del malware. Los “desarrolladores de malware” utilizan nuevas técnicas para generar malware polimórfico reutilizando los malware existentes, por lo cual es necesario agruparlos en familias para estudiar sus características y poder detectar nuevas variantes de los mismos. Este trabajo, además de presentar un detallado estado de la cuestión de la clasificación del malware de ficheros ejecutables PE, presenta un enfoque en el que se mejora el índice de la clasificación de la base de datos de Malware MALICIA utilizando las características estáticas de ficheros ejecutables Imphash y Pehash, utilizando dichas características se realiza un clustering con el algoritmo clustering agresivo el cual se cambia con la clasificación actual mediante el algoritmo de majority voting y la característica icon_label, obteniendo un Precision de 99,15% y un Recall de 99,32% mejorando la clasificación de MALICIA con un F-measure de 99,23%.---ABSTRACT---Malware is a serious threat to the security of systems. With the widespread use of the World Wide Web, there has been a huge increase in virus attacks, making the computer security essential for all computers. Near areas of research have append in this area including classifying malware into families, Malware developers use polymorphism to generate new variants of existing malware. Thus it is crucial to group variants of the same family, to study their characteristics and to detect new variants. This work, in addition to presenting a detailed analysis of the problem of classifying malware PE executable files, presents an approach in which the classification in the Malware database MALICIA is improved by using static characteristics of executable files, namely Imphash and Pehash. Both features are evaluated through clustering real malware with family labels with aggressive clustering algorithm and combining this with the current classification by Majority voting algorithm, obtaining a Precision of 99.15% and a Recall of 99.32%, improving the classification of MALICIA with an F-measure of 99,23%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aplicativos móveis de celulares que coletam dados pessoais estão cada vez mais presentes na rotina do cidadão comum. Associado a estas aplicações, há polêmicas sobre riscos de segurança e de invasão de privacidade, que podem se tornar entraves para aceitação destes sistemas por parte dos usuários. Por outro lado, discute-se o Paradoxo da Privacidade, em que os consumidores revelam mais informações pessoais voluntariamente, apesar de declarar que reconhecem os riscos. Há pouco consenso, nas pesquisas acadêmicas, sobre os motivos deste paradoxo ou mesmo se este fenômeno realmente existe. O objetivo desta pesquisa é analisar como a coleta de informações sensíveis influencia a escolha de aplicativos móveis. A metodologia é o estudo de aplicativos disponíveis em lojas virtuais para celulares através de técnicas qualitativas e quantitativas. Os resultados indicam que os produtos mais populares da loja são aqueles que coletam mais dados pessoais. Porém, em uma análise minuciosa, observa-se que aqueles mais buscados também pertencem a empresas de boa reputação e possuem mais funcionalidades, que exigem maior acesso aos dados privativos do celular. Na survey realizada em seguida, nota-se que os consumidores reduzem o uso dos aplicativos quando consideram que o produto coleta dados excessivamente, mas a estratégia para proteger essas informações pode variar. No grupo dos usuários que usam aplicativos que coletam dados excessivamente, conclui-se que o motivo primordial para compartilhar informações pessoais são as funcionalidades. Além disso, esta pesquisa confirma que comparar os dados solicitados pelos aplicativos com a expectativa inicial do consumidor é um constructo complementar para avaliar preocupações com privacidade, ao invés de simplesmente analisar a quantidade de informações coletadas. O processo desta pesquisa também ilustrou que, dependendo do método utilizado para análise, é possível chegar a resultados opostos sobre a ocorrência ou não do paradoxo. Isso pode dar indícios sobre os motivos da falta de consenso sobre o assunto

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To provide more efficient and flexible alternatives for the applications of secret sharing schemes, this paper describes a threshold sharing scheme based on exponentiation of matrices in Galois fields. A significant characteristic of the proposed scheme is that each participant has to keep only one master secret share which can be used to reconstruct different group secrets according to the number of threshold values.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Includes bibliographical references (p. 17-19).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the rapid growth of the Internet, computer attacks are increasing at a fast pace and can easily cause millions of dollar in damage to an organization. Detecting these attacks is an important issue of computer security. There are many types of attacks and they fall into four main categories, Denial of Service (DoS) attacks, Probe, User to Root (U2R) attacks, and Remote to Local (R2L) attacks. Within these categories, DoS and Probe attacks continuously show up with greater frequency in a short period of time when they attack systems. They are different from the normal traffic data and can be easily separated from normal activities. On the contrary, U2R and R2L attacks are embedded in the data portions of the packets and normally involve only a single connection. It becomes difficult to achieve satisfactory detection accuracy for detecting these two attacks. Therefore, we focus on studying the ambiguity problem between normal activities and U2R/R2L attacks. The goal is to build a detection system that can accurately and quickly detect these two attacks. In this dissertation, we design a two-phase intrusion detection approach. In the first phase, a correlation-based feature selection algorithm is proposed to advance the speed of detection. Features with poor prediction ability for the signatures of attacks and features inter-correlated with one or more other features are considered redundant. Such features are removed and only indispensable information about the original feature space remains. In the second phase, we develop an ensemble intrusion detection system to achieve accurate detection performance. The proposed method includes multiple feature selecting intrusion detectors and a data mining intrusion detector. The former ones consist of a set of detectors, and each of them uses a fuzzy clustering technique and belief theory to solve the ambiguity problem. The latter one applies data mining technique to automatically extract computer users’ normal behavior from training network traffic data. The final decision is a combination of the outputs of feature selecting and data mining detectors. The experimental results indicate that our ensemble approach not only significantly reduces the detection time but also effectively detect U2R and R2L attacks that contain degrees of ambiguous information.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Secrecy is fundamental to computer security, but real systems often cannot avoid leaking some secret information. For this reason, the past decade has seen growing interest in quantitative theories of information flow that allow us to quantify the information being leaked. Within these theories, the system is modeled as an information-theoretic channel that specifies the probability of each output, given each input. Given a prior distribution on those inputs, entropy-like measures quantify the amount of information leakage caused by the channel. ^ This thesis presents new results in the theory of min-entropy leakage. First, we study the perspective of secrecy as a resource that is gradually consumed by a system. We explore this intuition through various models of min-entropy consumption. Next, we consider several composition operators that allow smaller systems to be combined into larger systems, and explore the extent to which the leakage of a combined system is constrained by the leakage of its constituents. Most significantly, we prove upper bounds on the leakage of a cascade of two channels, where the output of the first channel is used as input to the second. In addition, we show how to decompose a channel into a cascade of channels. ^ We also establish fundamental new results about the recently-proposed g-leakage family of measures. These results further highlight the significance of channel cascading. We prove that whenever channel A is composition refined by channel B, that is, whenever A is the cascade of B and R for some channel R, the leakage of A never exceeds that of B, regardless of the prior distribution or leakage measure (Shannon leakage, guessing entropy leakage, min-entropy leakage, or g-leakage). Moreover, we show that composition refinement is a partial order if we quotient away channel structure that is redundant with respect to leakage alone. These results are strengthened by the proof that composition refinement is the only way for one channel to never leak more than another with respect to g-leakage. Therefore, composition refinement robustly answers the question of when a channel is always at least as secure as another from a leakage point of view.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the rapid growth of the Internet, computer attacks are increasing at a fast pace and can easily cause millions of dollar in damage to an organization. Detecting these attacks is an important issue of computer security. There are many types of attacks and they fall into four main categories, Denial of Service (DoS) attacks, Probe, User to Root (U2R) attacks, and Remote to Local (R2L) attacks. Within these categories, DoS and Probe attacks continuously show up with greater frequency in a short period of time when they attack systems. They are different from the normal traffic data and can be easily separated from normal activities. On the contrary, U2R and R2L attacks are embedded in the data portions of the packets and normally involve only a single connection. It becomes difficult to achieve satisfactory detection accuracy for detecting these two attacks. Therefore, we focus on studying the ambiguity problem between normal activities and U2R/R2L attacks. The goal is to build a detection system that can accurately and quickly detect these two attacks. In this dissertation, we design a two-phase intrusion detection approach. In the first phase, a correlation-based feature selection algorithm is proposed to advance the speed of detection. Features with poor prediction ability for the signatures of attacks and features inter-correlated with one or more other features are considered redundant. Such features are removed and only indispensable information about the original feature space remains. In the second phase, we develop an ensemble intrusion detection system to achieve accurate detection performance. The proposed method includes multiple feature selecting intrusion detectors and a data mining intrusion detector. The former ones consist of a set of detectors, and each of them uses a fuzzy clustering technique and belief theory to solve the ambiguity problem. The latter one applies data mining technique to automatically extract computer users’ normal behavior from training network traffic data. The final decision is a combination of the outputs of feature selecting and data mining detectors. The experimental results indicate that our ensemble approach not only significantly reduces the detection time but also effectively detect U2R and R2L attacks that contain degrees of ambiguous information.