901 resultados para Computer Network Resources
Resumo:
Wireless Mesh Networks (WMNs) are increasingly deployed to enable thousands of users to share, create, and access live video streaming with different characteristics and content, such as video surveillance and football matches. In this context, there is a need for new mechanisms for assessing the quality level of videos because operators are seeking to control their delivery process and optimize their network resources, while increasing the user’s satisfaction. However, the development of in-service and non-intrusive Quality of Experience assessment schemes for real-time Internet videos with different complexity and motion levels, Group of Picture lengths, and characteristics, remains a significant challenge. To address this issue, this article proposes a non-intrusive parametric real-time video quality estimator, called MultiQoE that correlates wireless networks’ impairments, videos’ characteristics, and users’ perception into a predicted Mean Opinion Score. An instance of MultiQoE was implemented in WMNs and performance evaluation results demonstrate the efficiency and accuracy of MultiQoE in predicting the user’s perception of live video streaming services when compared to subjective, objective, and well-known parametric solutions.
Resumo:
Long Term Evolution (LTE) represents the fourth generation (4G) technology which is capable of providing high data rates as well as support of high speed mobility. The EU FP7 Mobile Cloud Networking (MCN) project integrates the use of cloud computing concepts in LTE mobile networks in order to increase LTE's performance. In this way a shared distributed virtualized LTE mobile network is built that can optimize the utilization of virtualized computing, storage and network resources and minimize communication delays. Two important features that can be used in such a virtualized system to improve its performance are the user mobility and bandwidth prediction. This paper introduces the architecture and challenges that are associated with user mobility and bandwidth prediction approaches in virtualized LTE systems.
Resumo:
Advancements in cloud computing have enabled the proliferation of distributed applications, which require management and control of multiple services. However, without an efficient mechanism for scaling services in response to changing workload conditions, such as number of connected users, application performance might suffer, leading to violations of Service Level Agreements (SLA) and possible inefficient use of hardware resources. Combining dynamic application requirements with the increased use of virtualised computing resources creates a challenging resource Management context for application and cloud-infrastructure owners. In such complex environments, business entities use SLAs as a means for specifying quantitative and qualitative requirements of services. There are several challenges in running distributed enterprise applications in cloud environments, ranging from the instantiation of service VMs in the correct order using an adequate quantity of computing resources, to adapting the number of running services in response to varying external loads, such as number of users. The application owner is interested in finding the optimum amount of computing and network resources to use for ensuring that the performance requirements of all her/his applications are met. She/he is also interested in appropriately scaling the distributed services so that application performance guarantees are maintained even under dynamic workload conditions. Similarly, the infrastructure Providers are interested in optimally provisioning the virtual resources onto the available physical infrastructure so that her/his operational costs are minimized, while maximizing the performance of tenants’ applications. Motivated by the complexities associated with the management and scaling of distributed applications, while satisfying multiple objectives (related to both consumers and providers of cloud resources), this thesis proposes a cloud resource management platform able to dynamically provision and coordinate the various lifecycle actions on both virtual and physical cloud resources using semantically enriched SLAs. The system focuses on dynamic sizing (scaling) of virtual infrastructures composed of virtual machines (VM) bounded application services. We describe several algorithms for adapting the number of VMs allocated to the distributed application in response to changing workload conditions, based on SLA-defined performance guarantees. We also present a framework for dynamic composition of scaling rules for distributed service, which used benchmark-generated application Monitoring traces. We show how these scaling rules can be combined and included into semantic SLAs for controlling allocation of services. We also provide a detailed description of the multi-objective infrastructure resource allocation problem and various approaches to satisfying this problem. We present a resource management system based on a genetic algorithm, which performs allocation of virtual resources, while considering the optimization of multiple criteria. We prove that our approach significantly outperforms reactive VM-scaling algorithms as well as heuristic-based VM-allocation approaches.
Resumo:
As redes atuais de telecomunicações utilizam tecnologias de comutação de pacotes para integração de voz, dados, imagens e outros serviços. O tráfego nessas redes costuma ser feito por meio de tecnologias como o MPLS-TP e com regras heurísticas para a determinação dos melhores caminhos. O uso de boas regras afeta diretamente o desempenho e a segurança da operação. Este trabalho propõe o uso de simulação de baixo custo para prever o comportamento e avaliar regras de escolha de caminhos. Para isso, este trabalho avalia três métodos de seleção de caminhos de LSPs, combinados com duas heurísticas de recuperação, usados em redes MPLS-TP em malha com mecanismos de proteção em malha compartilhada. Os resultados das simulações medem o impacto dos métodos e heurísticas utilizados, demonstrando o quanto uma melhor seleção de caminhos pode contribuir para a redução do uso dos recursos da rede e do número máximo de LSPs afetados em caso de falhas na rede. Os resultados deste trabalho, bem como a técnica de análise proposta, almejam ser uma contribuição para a padronização de regras de seleção de LSPs em redes heterogêneas.
Resumo:
Computational Swarms (enxames computacionais), consistindo da integração de sensores e atuadores inteligentes no nosso mundo conectado, possibilitam uma extensão da info-esfera no mundo físico. Nós chamamos esta info-esfera extendida, cíber-física, de Swarm. Este trabalho propõe uma visão de Swarm onde dispositivos computacionais cooperam dinâmica e oportunisticamente, gerando redes orgânicas e heterogêneas. A tese apresenta uma arquitetura computacional do Plano de Controle do Sistema Operacional do Swarm, que é uma camada de software distribuída embarcada em todos os dispositivos que fazem parte do Swarm, responsável por gerenciar recursos, definindo atores, como descrever e utilizar serviços e recursos (como divulgá-los e descobrí-los, como realizar transações, adaptações de conteúdos e cooperação multiagentes). O projeto da arquitetura foi iniciado com uma revisão da caracterização do conceito de Swarm, revisitando a definição de termos e estabelecendo uma terminologia para ser utilizada. Requisitos e desafios foram identificados e uma visão operacional foi proposta. Esta visão operacional foi exercitada com casos de uso e os elementos arquiteturais foram extraídos dela e organizados em uma arquitetura. A arquitetura foi testada com os casos de uso, gerando revisões do sistema. Cada um dos elementos arquiteturais requereram revisões do estado da arte. Uma prova de conceito do Plano de Controle foi implementada e uma demonstração foi proposta e implementada. A demonstração selecionada foi o Smart Jukebox, que exercita os aspectos distribuídos e a dinamicidade do sistema proposto. Este trabalho apresenta a visão do Swarm computacional e apresenta uma plataforma aplicável na prática. A evolução desta arquitetura pode ser a base de uma rede global, heterogênea e orgânica de redes de dispositivos computacionais alavancando a integração de sistemas cíber-físicos na núvem permitindo a cooperação de sistemas escaláveis e flexíveis, interoperando para alcançar objetivos comuns.
Resumo:
The explosive growth of the traffic in computer systems has made it clear that traditional control techniques are not adequate to provide the system users fast access to network resources and prevent unfair uses. In this paper, we present a reconfigurable digital hardware implementation of a specific neural model for intrusion detection. It uses a specific vector of characterization of the network packages (intrusion vector) which is starting from information obtained during the access intent. This vector will be treated by the system. Our approach is adaptative and to detecting these intrusions by using a complex artificial intelligence method known as multilayer perceptron. The implementation have been developed and tested into a reconfigurable hardware (FPGA) for embedded systems. Finally, the Intrusion detection system was tested in a real-world simulation to gauge its effectiveness and real-time response.
Resumo:
Vita.
Resumo:
Cellular mobile radio systems will be of increasing importance in the future. This thesis describes research work concerned with the teletraffic capacity and the canputer control requirements of such systems. The work involves theoretical analysis and experimental investigations using digital computer simulation. New formulas are derived for the congestion in single-cell systems in which there are both land-to-mobile and mobile-to-mobile calls and in which mobile-to-mobile calls go via the base station. Two approaches are used, the first yields modified forms of the familiar Erlang and Engset formulas, while the second gives more complicated but more accurate formulas. The results of computer simulations to establish the accuracy of the formulas are described. New teletraffic formulas are also derived for the congestion in multi -cell systems. Fixed, dynamic and hybrid channel assignments are considered. The formulas agree with previously published simulation results. Simulation programs are described for the evaluation of the speech traffic of mobiles and for the investigation of a possible computer network for the control of the speech traffic. The programs were developed according to the structured progranming approach leading to programs of modular construction. Two simulation methods are used for the speech traffic: the roulette method and the time-true method. The first is economical but has some restriction, while the second is expensive but gives comprehensive answers. The proposed control network operates at three hierarchical levels performing various control functions which include: the setting-up and clearing-down of calls, the hand-over of calls between cells and the address-changing of mobiles travelling between cities. The results demonstrate the feasibility of the control netwvork and indicate that small mini -computers inter-connected via voice grade data channels would be capable of providing satisfactory control
Resumo:
Nowadays, road safety and traffic congestion are major concerns worldwide. This is why research on vehicular communication is very vital. In static scenarios vehicles behave typically like in an office network where nodes transmit without moving and with no defined position. This paper analyses the impact of context information on existing popular rate adaptation algorithms. Our simulation was done in MATLAB by observing the impact of context information on these algorithms. Simulation was performed for both static and mobile cases.Our simulations are based on IEEE 802.11p wireless standard. For static scenarios vehicles do not move and without defined positions, while for the mobile case, vehicles are mobile with uniformly selected speed and randomized positions. Network performance are analysed using context information. Our results show that in mobility when context information is used, the system performance can be improved for all three rate adaptation algorithms. That can be explained by that with range checking, when many vehicles are out of communication range, less vehicles contend for network resources, thereby increasing the network performances. © 2013 IEEE.
Resumo:
In this study, we showed various approachs implemented in Artificial Neural Networks for network resources management and Internet congestion control. Through a training process, Neural Networks can determine nonlinear relationships in a data set by associating the corresponding outputs to input patterns. Therefore, the application of these networks to Traffic Engineering can help achieve its general objective: “intelligent” agents or systems capable of adapting dataflow according to available resources. In this article, we analyze the opportunity and feasibility to apply Artificial Neural Networks to a number of tasks related to Traffic Engineering. In previous sections, we present the basics of each one of these disciplines, which are associated to Artificial Intelligence and Computer Networks respectively.
Resumo:
A framework that aims to best utilize the mobile network resources for video applications is presented in this paper. The main contribution of the work proposed is the QoE-driven optimization method that can maintain a desired trade-off between fairness and efficiency in allocating resources in terms of data rates to video streaming users in LTE networks. This method is concerned with the control of the user satisfaction level from the service continuity's point of view and applies appropriate QoE metrics (Pause Intensity and variations) to determine the scheduling strategies in combination with the mechanisms used for adaptive video streaming such as 3GP/MPEG-DASH. The superiority of the proposed algorithms are demonstrated, showing how the resources of a mobile network can be optimally utilized by using quantifiable QoE measurements. This approach can also find the best match between demand and supply in the process of network resource distribution.
Resumo:
In wireless sensor networks where nodes are powered by batteries, it is critical to prolong the network lifetime by minimizing the energy consumption of each node. In this paper, the cooperative multiple-input-multiple-output (MIMO) and data-aggregation techniques are jointly adopted to reduce the energy consumption per bit in wireless sensor networks by reducing the amount of data for transmission and better using network resources through cooperative communication. For this purpose, we derive a new energy model that considers the correlation between data generated by nodes and the distance between them for a cluster-based sensor network by employing the combined techniques. Using this model, the effect of the cluster size on the average energy consumption per node can be analyzed. It is shown that the energy efficiency of the network can significantly be enhanced in cooperative MIMO systems with data aggregation, compared with either cooperative MIMO systems without data aggregation or data-aggregation systems without cooperative MIMO, if sensor nodes are properly clusterized. Both centralized and distributed data-aggregation schemes for the cooperating nodes to exchange and compress their data are also proposed and appraised, which lead to diverse impacts of data correlation on the energy performance of the integrated cooperative MIMO and data-aggregation systems.
Resumo:
Computer networks produce tremendous amounts of event-based data that can be collected and managed to support an increasing number of new classes of pervasive applications. Examples of such applications are network monitoring and crisis management. Although the problem of distributed event-based management has been addressed in the non-pervasive settings such as the Internet, the domain of pervasive networks has its own characteristics that make these results non-applicable. Many of these applications are based on time-series data that possess the form of time-ordered series of events. Such applications also embody the need to handle large volumes of unexpected events, often modified on-the-fly, containing conflicting information, and dealing with rapidly changing contexts while producing results with low-latency. Correlating events across contextual dimensions holds the key to expanding the capabilities and improving the performance of these applications. This dissertation addresses this critical challenge. It establishes an effective scheme for complex-event semantic correlation. The scheme examines epistemic uncertainty in computer networks by fusing event synchronization concepts with belief theory. Because of the distributed nature of the event detection, time-delays are considered. Events are no longer instantaneous, but duration is associated with them. Existing algorithms for synchronizing time are split into two classes, one of which is asserted to provide a faster means for converging time and hence better suited for pervasive network management. Besides the temporal dimension, the scheme considers imprecision and uncertainty when an event is detected. A belief value is therefore associated with the semantics and the detection of composite events. This belief value is generated by a consensus among participating entities in a computer network. The scheme taps into in-network processing capabilities of pervasive computer networks and can withstand missing or conflicting information gathered from multiple participating entities. Thus, this dissertation advances knowledge in the field of network management by facilitating the full utilization of characteristics offered by pervasive, distributed and wireless technologies in contemporary and future computer networks.
Resumo:
In this work, we present an adaptive unequal loss protection (ULP) scheme for H264/AVC video transmission over lossy networks. This scheme combines erasure coding, H.264/AVC error resilience techniques and importance measures in video coding. The unequal importance of the video packets is identified in the group of pictures (GOP) and the H.264/AVC data partitioning levels. The presented method can adaptively assign unequal amount of forward error correction (FEC) parity across the video packets according to the network conditions, such as the available network bandwidth, packet loss rate and average packet burst loss length. A near optimal algorithm is developed to deal with the FEC assignment for optimization. The simulation results show that our scheme can effectively utilize network resources such as bandwidth, while improving the quality of the video transmission. In addition, the proposed ULP strategy ensures graceful degradation of the received video quality as the packet loss rate increases. © 2010 IEEE.
Resumo:
Computer networks produce tremendous amounts of event-based data that can be collected and managed to support an increasing number of new classes of pervasive applications. Examples of such applications are network monitoring and crisis management. Although the problem of distributed event-based management has been addressed in the non-pervasive settings such as the Internet, the domain of pervasive networks has its own characteristics that make these results non-applicable. Many of these applications are based on time-series data that possess the form of time-ordered series of events. Such applications also embody the need to handle large volumes of unexpected events, often modified on-the-fly, containing conflicting information, and dealing with rapidly changing contexts while producing results with low-latency. Correlating events across contextual dimensions holds the key to expanding the capabilities and improving the performance of these applications. This dissertation addresses this critical challenge. It establishes an effective scheme for complex-event semantic correlation. The scheme examines epistemic uncertainty in computer networks by fusing event synchronization concepts with belief theory. Because of the distributed nature of the event detection, time-delays are considered. Events are no longer instantaneous, but duration is associated with them. Existing algorithms for synchronizing time are split into two classes, one of which is asserted to provide a faster means for converging time and hence better suited for pervasive network management. Besides the temporal dimension, the scheme considers imprecision and uncertainty when an event is detected. A belief value is therefore associated with the semantics and the detection of composite events. This belief value is generated by a consensus among participating entities in a computer network. The scheme taps into in-network processing capabilities of pervasive computer networks and can withstand missing or conflicting information gathered from multiple participating entities. Thus, this dissertation advances knowledge in the field of network management by facilitating the full utilization of characteristics offered by pervasive, distributed and wireless technologies in contemporary and future computer networks.