907 resultados para Computational Simulator
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology
Resumo:
Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Throughout recent years, there has been an increase in the population size, as well as a fast economic growth, which has led to an increase of the energy demand that comes mainly from fossil fuels. In order to reduce the ecological footprint, governments have implemented sustainable measures and it is expected that by 2035 the energy produced from renewable energy sources, such as wind and solar would be responsible for one-third of the energy produced globally. However, since the energy produced from renewable sources is governed by the availability of the respective primary energy source there is often a mismatch between production and demand, which could be solved by adding flexibility on the demand side through demand response (DR). DR programs influence the end-user electricity usage by changing its cost along the time. Under this scenario the user needs to estimate the energy demand and on-site production in advance to plan its energy demand according to the energy price. This work focuses on the development of an agent-based electrical simulator, capable of: (a) estimating the energy demand and on-site generation with a 1-min time resolution for a 24-h period, (b) calculating the energy price for a given scenario, (c) making suggestions on how to maximize the usage of renewable energy produced on-site and to lower the electricity costs by rescheduling the use of certain appliances. The results show that this simulator allows reducing the energy bill by 11% and almost doubling the use of renewable energy produced on-site.
Resumo:
This paper presents an automated optimization framework able to provide network administrators with resilient routing configurations for link-state protocols, such as OSPF or IS-IS. In order to deal with the formulated NP-hard optimization problems, the devised framework is underpinned by the use of computational in- telligence optimization engines, such as Multi-objective Evolutionary Algorithms (MOEAs). With the objective of demonstrating the framework capabilities, two il- lustrative Traffic Engineering methods are described, allowing to attain routing con- figurations robust to changes in the traffic demands and maintaining the network stable even in the presence of link failure events. The presented illustrative results clearly corroborate the usefulness of the proposed automated framework along with the devised optimization methods.
Resumo:
Studies in Computational Intelligence, 616
Resumo:
This work reports the implementation and verification of a new so lver in OpenFOAM® open source computational library, able to cope with integral viscoelastic models based on the integral upper-convected Maxwell model. The code is verified through the comparison of its predictions with analytical solutions and numerical results obtained with the differential upper-convected Maxwell model
Resumo:
The MAP-i Doctoral Program of the Universities of Minho, Aveiro and Porto
Resumo:
Tese de Doutoramento (Programa Doutoral em Engenharia Biomédica)
Resumo:
Contexto: O estudo de cybersickness, sintomas desconfortáveis relacionados à interação em ambientes virtuais, é importante para a implementação de melhorias destes, para ajudar a preservar o bem-estar dos usuários e reduzir o abandono às exposições virtuais. Usar um instrumento adequado para identificar e mensurar os sintomas de cybersickness, de forma padronizada, pode contribuir para essa finalidade. Objetivo: Este estudo tem como objetivo apresentar as etapas de tradução e adaptação para a língua portuguesa do instrumento Simulator Sickness Questionnaire, que mede os sintomas de cybersickness. Métodos: Três traduções e retrotraduções foram realizadas por avaliadores independentes; realizaram-se a equivalência semântica e a avaliação das versões, sendo elaborada uma versão síntese. Os comentários dos participantes sobre a versão preliminar do questionário foram examinados. Resultados: Foi construída a versão brasileira preliminar do questionário. Verificou-se que a maioria dos participantes entendeu as descrições dos sintomas expostas no questionário em português. Conclusão: A utilização de três versões de tradução e retrotradução, discussão sobre a versão síntese e a interlocução com a população-alvo proporcionaram viabilidade ao processo de equivalência semântica da versão final brasileira.
Resumo:
PhD thesis in Biomedical Engineering
Resumo:
The use of genome-scale metabolic models has been rapidly increasing in fields such as metabolic engineering. An important part of a metabolic model is the biomass equation since this reaction will ultimately determine the predictive capacity of the model in terms of essentiality and flux distributions. Thus, in order to obtain a reliable metabolic model the biomass precursors and their coefficients must be as precise as possible. Ideally, determination of the biomass composition would be performed experimentally, but when no experimental data are available this is established by approximation to closely related organisms. Computational methods however, can extract some information from the genome such as amino acid and nucleotide compositions. The main objectives of this study were to compare the biomass composition of several organisms and to evaluate how biomass precursor coefficients affected the predictability of several genome-scale metabolic models by comparing predictions with experimental data in literature. For that, the biomass macromolecular composition was experimentally determined and the amino acid composition was both experimentally and computationally estimated for several organisms. Sensitivity analysis studies were also performed with the Escherichia coli iAF1260 metabolic model concerning specific growth rates and flux distributions. The results obtained suggest that the macromolecular composition is conserved among related organisms. Contrasting, experimental data for amino acid composition seem to have no similarities for related organisms. It was also observed that the impact of macromolecular composition on specific growth rates and flux distributions is larger than the impact of amino acid composition, even when data from closely related organisms are used.
Resumo:
This paper presents an automated optimization framework able to provide network administrators with resilient routing configurations for link-state protocols, such as OSPF or IS-IS. In order to deal with the formulated NP-hard optimization problems, the devised framework is underpinned by the use of computational intelligence optimization engines, such as Multi-objective Evolutionary Algorithms (MOEAs). With the objective of demonstrating the framework capabilities, two illustrative Traffic Engineering methods are described, allowing to attain routing configurations robust to changes in the traffic demands and maintaining the network stable even in the presence of link failure events. The presented illustrative results clearly corroborate the usefulness of the proposed automated framework along with the devised optimization methods.
Resumo:
During must fermentation by Saccharomyces cerevisiae strains thousands of volatile aroma compounds are formed. The objective of the present work was to adapt computational approaches to analyze pheno-metabolomic diversity of a S. cerevisiae strain collection with different origins. Phenotypic and genetic characterization together with individual must fermentations were performed, and metabolites relevant to aromatic profiles were determined. Experimental results were projected onto a common coordinates system, revealing 17 statistical-relevant multi-dimensional modules, combining sets of most-correlated features of noteworthy biological importance. The present method allowed, as a breakthrough, to combine genetic, phenotypic and metabolomic data, which has not been possible so far due to difficulties in comparing different types of data. Therefore, the proposed computational approach revealed as successful to shed light into the holistic characterization of S. cerevisiae pheno-metabolome in must fermentative conditions. This will allow the identification of combined relevant features with application in selection of good winemaking strains.
Resumo:
El objetivo de este proyecto, enmarcado en el área de metodología de análisis en bioingeniería-biotecnología aplicadas al estudio del cancer, es el análisis y caracterización a través modelos estadísticos con efectos mixtos y técnicas de aprendizaje automático, de perfiles de expresión de proteínas y genes de las vías metabolicas asociadas a progresión tumoral. Dicho estudio se llevará a cabo mediante la utilización de tecnologías de alto rendimiento. Las mismas permiten evaluar miles de genes/proteínas en forma simultánea, generando así una gran cantidad de datos de expresión. Se hipotetiza que para un análisis e interpretación de la información subyacente, caracterizada por su abundancia y complejidad, podría realizarse mediante técnicas estadístico-computacionales eficientes en el contexto de modelos mixtos y técnias de aprendizaje automático. Para que el análisis sea efectivo es necesario contemplar los efectos ocasionados por los diferentes factores experimentales ajenos al fenómeno biológico bajo estudio. Estos efectos pueden enmascarar la información subycente y así perder informacion relavante en el contexto de progresión tumoral. La identificación de estos efectos permitirá obtener, eficientemente, los perfiles de expresión molecular que podrían permitir el desarrollo de métodos de diagnóstico basados en ellos. Con este trabajo se espera poner a disposición de investigadores de nuestro medio, herramientas y procedimientos de análisis que maximicen la eficiencia en el uso de los recursos asignados a la masiva captura de datos genómicos/proteómicos que permitan extraer información biológica relevante pertinente al análisis, clasificación o predicción de cáncer, el diseño de tratamientos y terapias específicos y el mejoramiento de los métodos de detección como así tambien aportar al entendimieto de la progresión tumoral mediante análisis computacional intensivo.