1000 resultados para Computação em nuvem
Resumo:
The frequency selective surfaces, or FSS (Frequency Selective Surfaces), are structures consisting of periodic arrays of conductive elements, called patches, which are usually very thin and they are printed on dielectric layers, or by openings perforated on very thin metallic surfaces, for applications in bands of microwave and millimeter waves. These structures are often used in aircraft, missiles, satellites, radomes, antennae reflector, high gain antennas and microwave ovens, for example. The use of these structures has as main objective filter frequency bands that can be broadcast or rejection, depending on the specificity of the required application. In turn, the modern communication systems such as GSM (Global System for Mobile Communications), RFID (Radio Frequency Identification), Bluetooth, Wi-Fi and WiMAX, whose services are highly demanded by society, have required the development of antennas having, as its main features, and low cost profile, and reduced dimensions and weight. In this context, the microstrip antenna is presented as an excellent choice for communications systems today, because (in addition to meeting the requirements mentioned intrinsically) planar structures are easy to manufacture and integration with other components in microwave circuits. Consequently, the analysis and synthesis of these devices mainly, due to the high possibility of shapes, size and frequency of its elements has been carried out by full-wave models, such as the finite element method, the method of moments and finite difference time domain. However, these methods require an accurate despite great computational effort. In this context, computational intelligence (CI) has been used successfully in the design and optimization of microwave planar structures, as an auxiliary tool and very appropriate, given the complexity of the geometry of the antennas and the FSS considered. The computational intelligence is inspired by natural phenomena such as learning, perception and decision, using techniques such as artificial neural networks, fuzzy logic, fractal geometry and evolutionary computation. This work makes a study of application of computational intelligence using meta-heuristics such as genetic algorithms and swarm intelligence optimization of antennas and frequency selective surfaces. Genetic algorithms are computational search methods based on the theory of natural selection proposed by Darwin and genetics used to solve complex problems, eg, problems where the search space grows with the size of the problem. The particle swarm optimization characteristics including the use of intelligence collectively being applied to optimization problems in many areas of research. The main objective of this work is the use of computational intelligence, the analysis and synthesis of antennas and FSS. We considered the structures of a microstrip planar monopole, ring type, and a cross-dipole FSS. We developed algorithms and optimization results obtained for optimized geometries of antennas and FSS considered. To validate results were designed, constructed and measured several prototypes. The measured results showed excellent agreement with the simulated. Moreover, the results obtained in this study were compared to those simulated using a commercial software has been also observed an excellent agreement. Specifically, the efficiency of techniques used were CI evidenced by simulated and measured, aiming at optimizing the bandwidth of an antenna for wideband operation or UWB (Ultra Wideband), using a genetic algorithm and optimizing the bandwidth, by specifying the length of the air gap between two frequency selective surfaces, using an optimization algorithm particle swarm
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
Image segmentation is one of the image processing problems that deserves special attention from the scientific community. This work studies unsupervised methods to clustering and pattern recognition applicable to medical image segmentation. Natural Computing based methods have shown very attractive in such tasks and are studied here as a way to verify it's applicability in medical image segmentation. This work treats to implement the following methods: GKA (Genetic K-means Algorithm), GFCMA (Genetic FCM Algorithm), PSOKA (PSO and K-means based Clustering Algorithm) and PSOFCM (PSO and FCM based Clustering Algorithm). Besides, as a way to evaluate the results given by the algorithms, clustering validity indexes are used as quantitative measure. Visual and qualitative evaluations are realized also, mainly using data given by the BrainWeb brain simulator as ground truth
Resumo:
Hospital Automation is an area that is constantly growing. The emergency of new technologies and hardware is transforming the processes more efficient. Nevertheless, some of the hospital processes are still being performed manually, such as monitoring of patients that is considered critical because it involves human lives. One of the factors that should be taken into account during a monitoring is the agility to detect any abnormality in vital signs of patients, as well as warning of this anomaly to the medical team involved. So, this master's thesis aims to develop an architecture to automate this process of monitoring and reporting of possible alert to a professional, so that emergency care can be done effectively. The computing mobile was used to improve the communication by distributing messages between a central located into the hospital and the mobile carried by the duty
Resumo:
The study of aerodynamic loading variations has many engineering applications, including helicopter rotor blades, wind turbines and turbo machinery. This work uses a Vortex Method to make a lagrangian description of the a twodimensional airfoil/ incident wake vortex interaction. The flow is incompressible, newtonian, homogeneus and the Reynolds Number is 5x105 .The airfoil is a NACA 0018 placed a angle of attack of the 0° and 5°simulates with the Painel Method with a constant density vorticity panels and a generation poit is near the painel. The protector layer is created does not permit vortex inside the body. The vortex Lamb convection is realized with the Euler Method (first order) and Adans-Bashforth (second order). The Random Walk Method is used to simulate the diffusion. The circular wake has 366 vortex all over positive or negative vorticity located at different heights with respect to the airfoil chord. The Lift was calculated based in the algorithm created by Ricci (2002). This simulation uses a ready algorithm vatidated with single body does not have a incident wake. The results are compared with a experimental work The comparasion concludes that the experimental results has a good agrement with this papper
Resumo:
One of the current challenges of Ubiquitous Computing is the development of complex applications, those are more than simple alarms triggered by sensors or simple systems to configure the environment according to user preferences. Those applications are hard to develop since they are composed by services provided by different middleware and it is needed to know the peculiarities of each of them, mainly the communication and context models. This thesis presents OpenCOPI, a platform which integrates various services providers, including context provision middleware. It provides an unified ontology-based context model, as well as an environment that enable easy development of ubiquitous applications via the definition of semantic workflows that contains the abstract description of the application. Those semantic workflows are converted into concrete workflows, called execution plans. An execution plan consists of a workflow instance containing activities that are automated by a set of Web services. OpenCOPI supports the automatic Web service selection and composition, enabling the use of services provided by distinct middleware in an independent and transparent way. Moreover, this platform also supports execution adaptation in case of service failures, user mobility and degradation of services quality. The validation of OpenCOPI is performed through the development of case studies, specifically applications of the oil industry. In addition, this work evaluates the overhead introduced by OpenCOPI and compares it with the provided benefits, and the efficiency of OpenCOPI s selection and adaptation mechanism
Resumo:
Traditional applications of feature selection in areas such as data mining, machine learning and pattern recognition aim to improve the accuracy and to reduce the computational cost of the model. It is done through the removal of redundant, irrelevant or noisy data, finding a representative subset of data that reduces its dimensionality without loss of performance. With the development of research in ensemble of classifiers and the verification that this type of model has better performance than the individual models, if the base classifiers are diverse, comes a new field of application to the research of feature selection. In this new field, it is desired to find diverse subsets of features for the construction of base classifiers for the ensemble systems. This work proposes an approach that maximizes the diversity of the ensembles by selecting subsets of features using a model independent of the learning algorithm and with low computational cost. This is done using bio-inspired metaheuristics with evaluation filter-based criteria
Resumo:
Due to great difficulty of accurate solution of Combinatorial Optimization Problems, some heuristic methods have been developed and during many years, the analysis of performance of these approaches was not carried through in a systematic way. The proposal of this work is to make a statistical analysis of heuristic approaches to the Traveling Salesman Problem (TSP). The focus of the analysis is to evaluate the performance of each approach in relation to the necessary computational time until the attainment of the optimal solution for one determined instance of the TSP. Survival Analysis, assisted by methods for the hypothesis test of the equality between survival functions was used. The evaluated approaches were divided in three classes: Lin-Kernighan Algorithms, Evolutionary Algorithms and Particle Swarm Optimization. Beyond those approaches, it was enclosed in the analysis, a memetic algorithm (for symmetric and asymmetric TSP instances) that utilizes the Lin-Kernighan heuristics as its local search procedure
Resumo:
In this work will applied the technique of Differential Cryptanalysis, introduced in 1990 by Biham and Shamir, on Papílio s cryptosystem, developed by Karla Ramos, to test and most importantly, to prove its relevance to other block ciphers such as DES, Blowfish and FEAL-N (X). This technique is based on the analysis of differences between plaintext and theirs respective ciphertext, in search of patterns that will assist in the discovery of the subkeys and consequently in the discovery of master key. These differences are obtained by XOR operations. Through this analysis, in addition to obtaining patterns of Pap´ılio, it search to obtain also the main characteristics and behavior of Papilio throughout theirs 16 rounds, identifying and replacing when necessary factors that can be improved in accordance with pre-established definitions of the same, thus providing greater security in the use of his algoritm
Resumo:
The distribution of petroleum products through pipeline networks is an important problem that arises in production planning of refineries. It consists in determining what will be done in each production stage given a time horizon, concerning the distribution of products from source nodes to demand nodes, passing through intermediate nodes. Constraints concerning storage limits, delivering time, sources availability, limits on sending or receiving, among others, have to be satisfied. This problem can be viewed as a biobjective problem that aims at minimizing the time needed to for transporting the set of packages through the network and the successive transmission of different products in the same pipe is called fragmentation. This work are developed three algorithms that are applied to this problem: the first algorithm is discrete and is based on Particle Swarm Optimization (PSO), with local search procedures and path-relinking proposed as velocity operators, the second and the third algorithms deal of two versions based on the Non-dominated Sorting Genetic Algorithm II (NSGA-II). The proposed algorithms are compared to other approaches for the same problem, in terms of the solution quality and computational time spent, so that the efficiency of the developed methods can be evaluated
Resumo:
The separation methods are reduced applications as a result of the operational costs, the low output and the long time to separate the uids. But, these treatment methods are important because of the need for extraction of unwanted contaminants in the oil production. The water and the concentration of oil in water should be minimal (around 40 to 20 ppm) in order to take it to the sea. Because of the need of primary treatment, the objective of this project is to study and implement algorithms for identification of polynomial NARX (Nonlinear Auto-Regressive with Exogenous Input) models in closed loop, implement a structural identification, and compare strategies using PI control and updated on-line NARX predictive models on a combination of three-phase separator in series with three hydro cyclones batteries. The main goal of this project is to: obtain an optimized process of phase separation that will regulate the system, even in the presence of oil gushes; Show that it is possible to get optimized tunings for controllers analyzing the mesh as a whole, and evaluate and compare the strategies of PI and predictive control applied to the process. To accomplish these goals a simulator was used to represent the three phase separator and hydro cyclones. Algorithms were developed for system identification (NARX) using RLS(Recursive Least Square), along with methods for structure models detection. Predictive Control Algorithms were also implemented with NARX model updated on-line, and optimization algorithms using PSO (Particle Swarm Optimization). This project ends with a comparison of results obtained from the use of PI and predictive controllers (both with optimal state through the algorithm of cloud particles) in the simulated system. Thus, concluding that the performed optimizations make the system less sensitive to external perturbations and when optimized, the two controllers show similar results with the assessment of predictive control somewhat less sensitive to disturbances
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)