986 resultados para Composite tissue allotransplantation
Resumo:
The authors present the long-term results in a series of 44 cases with post-traumatic bone defects solved with muscle-rib flaps, between March 1997 and December 2007. In these cases, we performed 21 serratus anterior-rib flaps (SA-R), 10 latissimus dorsi-rib flaps (LD-R), and 13 LD-SA-R. The flaps were used in upper limb in 18 cases and in lower limb in 26 cases. With an overall immediate success rate of 95.4% (42 of 44 cases) and a primary bone union rate of 97.7% (43 of 44 cases), and despite the few partisans of this method, we consider that this procedure still remains very usefully for small and medium bone defects accompanied by large soft tissue defects.
Resumo:
Three different fissure preparation procedures were tested and compared to the non-invasive approach using a conventional unfilled sealant and a flowable composite. Eighty permanent molars were selected and divided into 4 groups of 20 teeth each. All the teeth were split into 2 halves, and the exposed fissures were photographed under a microscope (35x) before and after being prepared using the following methods: (I) Er:YAG laser (KEY Laser, KaVo) 600 mJ pulse energy, 6 Hz; (II) diamond bur; (III) Er: YAG laser (KEY Laser, KaVo) 200 mJ pulse energy, 4 Hz; (IV) Control group: Powder jet cleaner (Prophyflex, KaVo, Germany). The pre-and postimages were superimposed in order to evaluate the amount of hard tissue removed. Ten teeth in each group were then acid etched and sealed with an unfilled sealant (Delton opaque, Dentsply), while the remaining 10 teeth were acid etched, primed and bonded (Prime ; Bond NT, Dentsply) and sealed with a flowable composite (X-flow, DeTrey, Dentsply). Material penetration and microleakage were evaluated after thermocycling (5000 cycles) and staining with methylene blue 5%. ANOVA and Mann-Whitney tests were applied for statistical analysis. The laser 600 mJ and bur eliminated the greatest amount of hard tissue. The control teeth presented the least microleakage when sealed with Delton or X-flow. A correlation between material penetration and microleakage could not be statistically confirmed. Mechanical preparation prior to fissure sealing did not enhance the final performance of the sealant.
Resumo:
Basal cell carcinoma is the most frequent cutaneous cancer of the nose and is characterized by its local spreading and exceptionally rare tendency to metastasize. Since a significant advantage has been seen in surgery compared to other treatments, surgical excision ensuring the highest chance of cure is frequently employed. Excision defects of the nose may be covered with either local flap or a full-thickness skin graft. In resurfacing such defects following excision of basal cell carcinomas, we favor the technique of composite-skin grafting which involves the harvesting of composite-skin graft including the epidermis, dermis and superficial layers of subcutaneous tissue to obtain the required thickness in the recipient site. This technique was used for defects remaining after the excision of basal cell carcinomas in a series of 15 patients. The areas involved were lateral nasal region (5 cases), nasal tip (4 cases), dorsum (3 cases), alar lobule (2 cases), and soft triangle (1 case). The mean follow-up was 14.2 months. The color, texture and thickness of the composite-skin graft harvested from the preauricular site and the neck compare favorably with the skin of the nose region. Satisfactory results, both clinically and in patient appreciation, have been obtained in both the reconstruction site and the appearance of the donor site in all patients.
Resumo:
Currently, systemic immunosuppression is used in vascularized composite allotransplantation (VCA). This treatment has considerable side effects and reduces the quality of life of VCA recipients. We loaded the immunosuppressive drug tacrolimus into a self-assembled hydrogel, which releases the drug in response to proteolytic enzymes that are overexpressed during inflammation. A one-time local injection of the tacrolimus-laden hydrogel significantly prolonged graft survival in a Brown Norway-to-Lewis rat hindlimb transplantation model, leading to a median graft survival of >100 days compared to 33.5 days in tacrolimus only-treated recipients. Control groups with no treatment or hydrogel only showed a graft survival of 11 days. Histopathological evaluation, including anti-graft antibodies and complement C3, revealed significantly reduced immune responses in the tacrolimus-hydrogel group compared with tacrolimus only. In conclusion, a single-dose local injection of an enzyme-responsive tacrolimus-hydrogel is capable of preventing VCA rejection for >100 days in a rat model and may offer a new approach for immunosuppression in VCA.
Resumo:
OBJECTIVES To report the mid-term results of aortic root replacement using a self-assembled biological composite graft, consisting of a vascular tube graft and a stented tissue valve. METHODS Between January 2005 and December 2011, 201 consecutive patients [median age 66 (interquartile range, IQR, 55-77) years, 31 female patients (15.4%), median logistic EuroSCORE 10 (IQR 6.8-23.2)] underwent aortic root replacement using a stented tissue valve for the following indications: annulo-aortic ectasia or ascending aortic aneurysm with aortic valve disease in 162 (76.8%) patients, active infective endocarditis in 18 (9.0%) and acute aortic dissection Stanford type A in 21 (10.4%). All patients underwent clinical and echocardiographic follow-up. We analysed survival and valve-related events. RESULTS The overall in-hospital mortality rate was 4.5%. One- and 5-year cardiac-related mortality rates were 3 and 6%, and overall survival was 95 ± 1.5 and 75 ± 3.6%, respectively. The rate of freedom from structural valve failure was 99% and 97 ± 0.4% at the 1- and 5-year follow-up, respectively. The incidence rates of prosthetic valve endocarditis were 3 and 4%, respectively. During a median follow-up of 28 (IQR 14-51) months, only 2 (1%) patients required valve-related redo surgery due to prosthetic valvular endocarditis and none suffered from thromboembolic events. One percent of patients showed structural valve deterioration without any clinical symptoms; none of the patients suffered greater than mild aortic regurgitation. CONCLUSIONS Aortic root replacement using a self-assembled biological composite graft is an interesting option. Haemodynamic results are excellent, with freedom from structured valve failure. Need for reoperation is extremely low, but long-term results are necessary to prove the durability of this concept.
Resumo:
The correspondence of the state of alignment of macromolecules in biomimetic materials and natural tissues is demonstrated by investigating a mechanism of electrical polarity formation: An in vitro grown biomimetic FAp/gelatin composite is investigated for its polar properties by second harmonic (SHGM) and scanning pyroelectric microscopy (SPEM). Hexagonal prismatic seed crystals formed in gelatin gels represent a monodomain polar state, due to aligned mineralized gelatin molecules. Later growth stages, showing dumbbell morphologies, develop into a bipolar state because of surface recognition by gelatin functionality: A reversal of the polar alignment of macromolecules, thus, takes place close to that basal plane of the seed. In natural hard tissues (teeth and bone investigated by SPEM) and the biomimetic FAp/gelatin composite, we find a surprising analogy in view of growth-induced states of polarity: The development of polarity in vivo and in vitro can be explained by a Markov-type mechanism of molecular recognition during the attachment of macromolecules.
Resumo:
Introduction: Treating low back pain (LBP) has become an increasing challenge, as it is one of the main factors causing pain and is accompanied by high costs for the individual and the society. LBP can be caused by trauma of the intervertebral disc (IVD) or IVD degeneration. In the case of disc herniation the inner gelatinous part of the IVD, called nucleus pulposus, is pressed through the fibrous, annulus fibrosus that forms the outer part of the IVD. Today’s gold standard for treatment is extensive surgery as removal of the IVD and fusion of the vertebrae. In order to find a more gentle way to treat LBP and restore the native IVD we use a novel silk fleece-membrane composite from genetically modified silk worms whose silk contains a growth factor (GDF-6) that is associated with pushing stem cells towards a disc like phenotype (1). By combining it with a genipin-enhanced fibrin hydrogel we tested its suitability in organ culture on prior injured bovine IVD in our custom built two-degree of freedom bioreactor to mimic natural loading conditions. Material & Methods: Bovine IVDs of 12-17 months old animals were isolated by first removing all surrounding tissue followed by cutting out the IVDs as previously described (2). Culturing of discs occurred in high glucose Dulbecco's Modified Eagle Medium (HG-DMEM) supplemented with 5% serum as previously described (2). On the next day injury was induced using a 2mm biopsy punch (Polymed, Switzerland). The formed cavity was filled with (0.4%) genipin-enhanced human based fibrin hydrogel (35-55mg/mL human fibrinogen, Baxter, Austria) and sealed with a silk fleece-membrane composite (Spintec Engineering, Germany). Different culture conditions were applied: free swelling, static diurnal load of 0.2MPa for 8h/d and complex loading at 0.2MPa compression combined with ± 2° torsion at 0.2Hz for 8h/d (2). After 14 days of culture cell activity was determined with resazurin assay. Additionally, glycosaminoglycan (dimethyl-methylene blue), DNA (Hoechst) and collagen content (hydroxy- proline) were determined. Finally, real-time qPCR of major IVD marker and inflammation genes was performed to judge integrity of IVDs. Results: The fibrin hydrogel is able to keep the silk seal in place throughout the 14 days of in organ culture under all conditions. Additionally, cell activity showed optimistic results and we could not confirm negative effects of the repaired discs regarding overexpression of inflammation markers. Conclusions: The genipin-enhanced fibrin hydrogel in combination with the silk fleece- membrane composite seems to be a promising approach for IVD repair. Currently we assess the capability of GDF-6 incorporated in our silk composites on human mesenchymal stem cells and later on in organ culture. References 1. Clarke LE, McConnell JC, Sherratt MJ, Derby B, Richardson SM, Hoyland JA. Growth differentiation factor 6 and transforming growth factor-beta differentially mediate mesenchymal stem cell differentiation, composition and micromechanical properties of nucleus pulposus constructs. Arthritis Res Ther 2014, Mar 12;16(2):R67. 2. Chan SC, Gantenbein-Ritter B. Preparation of intact bovine tail intervertebral discs for organ culture. J Vis Exp 2012, Feb 2;60(60):e3490. Acknowledgements. This work is funded by the Gebert Rüf Foundation, project number GRS-028/13.
Resumo:
Nucleus pulposus replacements have been subjected to highly controversial discussions over the last 40 years. Their use has not yet resulted in a positive outcome to treat herniated disc or degenerated disc disease. The main reason is that not a single implant or tissue replacement was able to withstand the loads within an intervertebral disc. Here, we report on the development of a photo-polymerizable poly(ethylene glycol)dimethacrylate nano-fibrillated cellulose composite hydrogel which was tuned according to native tissue properties. Using a customized minimally-invasive medical device to inject and photopolymerize the hydrogel insitu, samples were implanted through an incision of 1 mm into an intervertebral disc of a bovine organ model to evaluate their long-term performance. When implanted into the bovine disc model, the composite hydrogel implant was able to significantly re-establish disc height after surgery (p < 0.0025). The height was maintained after 0.5 million loading cycles (p < 0.025). The mechanical resistance of the novel composite hydrogel material combined with the minimally invasive implantation procedure into a bovine disc resulted in a promising functional orthopedic implant for the replacement of the nucleus pulposus.
Resumo:
The high-altitude lake Tso Moriri (32°55'46'' N, 78°19'24'' E; 4522 m a.s.l.) is situated at the margin of the ISM and westerly influences in the Trans-Himalayan region of Ladakh. Human settlements are rare and domestic and wild animals are concentrating at the alpine meadows. A set of modern surface samples and fossil pollen from deep-water TMD core was evaluated with a focus on indicator types revealing human impact, grazing activities and lake system development during the last ca. 12 cal ka BP. Furthermore, the non-pollen palynomorph (NPP) record, comprising remains of limnic algae and invertebrates as well as fungal spores and charred plant tissue fragments, were examined in order to attest palaeolimnic phases and human impact, respectively. Changes in the early and middle Holocene limnic environment are mainly influenced by regional climatic conditions and glacier-fed meltwater flow in the catchment area. The NPP record indicates low lake productivity with high influx of freshwater between ca. 11.5 and 4.5 cal ka BP which is in agreement with the regional monsoon dynamics and published climate reconstructions. Geomorphologic observations suggest that during this period of enhanced precipitation the lake had a regular outflow and contributed large amounts of water to the Sutlej River, the lower reaches of which were integral part of the Indus Civilization area. The inferred minimum fresh water input and maximum lake productivity between ca. 4.5-1.8 cal ka BP coincides with the reconstruction of greatest aridity and glaciation in the Korzong valley resulting in significantly reduced or even ceased outflow. We suggest that lowered lake levels and river discharge on a larger regional scale may have caused irrigation problems and harvest losses in the Indus valley and lowlands occupied by sedentary agricultural communities. This scenario, in turn, supports the theory that, Mature Harappan urbanism (ca. 4.5-3.9 cal ka BP) emerged in order to facilitate storage, protection, administration, and redistribution of crop yields and secondly, the eventual collapse of the Harappan Culture (ca. 3.5-3 cal ka BP) was promoted by prolonged aridity. There is no clear evidence for human impact around Tso Moriri prior to ca. 3.7 cal ka BP, with a more distinct record since ca. 2.7 cal ka BP. This suggests that the sedimentary record from Tso Moriri primarily archives the regional climate history.
Resumo:
Caracterización de los procesos de disipación mecánica basándose en la microestructura de los tejidos blandos. We present a continuous damage model with regularized softening (smeared crack models) for fiber reinforced soft tissues. Material parameters of the continuous model derive from the mesoscopic scale. In the mesoscopic scale continuum is considered as a collagenous fibrilreinforced composite. We want to study the continnumlevel response as a function of the nanoscale properties of the collagen and the adherent forces between the tropocollagen molecules.
Resumo:
By using reverse transcription-coupled PCR on rat anterior pituitary RNA, we isolated a 285-bp cDNA coding for a novel subtilisin/kexin-like protein convertase (PC), called rat (r) PC7. By screening rat spleen and PC12 cell lambda gt11 cDNA libraries, we obtained a composite 3.5-kb full-length cDNA sequence of rPC7. The open reading frame codes for a prepro-PC with a 36-amino acid signal peptide, a 104-amino acid prosegment ending with a cleavable RAKR sequence, and a 747-amino acid type I membrane-bound glycoprotein, representing the mature form of this serine proteinase. Phylogenetic analysis suggests that PC7 represents the most divergent enzyme of the mammalian convertase family and that it is the closest member to the yeast convertases krp and kexin. Northern blot analyses demonstrated a widespread expression with the richest source of rPC7 mRNA being the colon and lymphoid-associated tissues. In situ hybridization revealed a distinctive tissue distribution that sometimes overlaps with that of furin, suggesting that PC7 has widespread proteolytic functions. The gene for PC7 (Pcsk7) was mapped to mouse chromosome 9 by linkage analysis of an interspecific backcross DNA panel.
Resumo:
The glucocorticoid-responsive units (GRUs) of the rat tyrosine aminotransferase were associated with the regulatory sequences of a cellular gene expressed ubiquitously--that coding for the largest subunit of RNA polymerase II. In transient expression assays, glucocorticoid responsiveness of the hybrid regulatory regions depends on the spatial relationship and number of regulatory elements. Two parameters affect the ratio of induction by glucocorticoids: the basal level of the hybrid promoter that is affected by the RNA polymerase II regulatory sequences and the glucocorticoid-induced level that depends on the distance between the GRUs and the TATA box. A fully active glucocorticoid-responsive hybrid gene was used to generate transgenic mice. Results show that a composite regulatory pattern is obtained: ubiquitous basal expression characteristic of the RNA polymerase II gene and liver-specific glucocorticoid activation characteristic of the tyrosine aminotransferase GRUs. This result demonstrates that the activity of the tyrosine aminotransferase GRUs is cell-type-specific not only in cultured cells but also in the whole animal.
Resumo:
BACKGROUND: Centrifugal spinning is a novel fibre-forming process that readily permits the incorporation of additives while avoiding the thermal damage often associated with conventional melt spinning. Centrifugal spinning of a viscous solution of poly(3-hydroxybutyrate) (PHB) mixed with pectin was used to fabricate a range of fibres containing different concentrations of this biologically active agent. The influence of this blending on fibre morphology and in vitro degradation in an accelerated hydrolytic model at 70 ?C and pH of 10.6 is reported. RESULTS: Blending influenced the physiochemical properties of the fibres, andthis significantly affected thedegradation profile of both the fibre and its PHB constituent. A greater influence on degradation was exerted by the type of pectin and its degree of esterification than by variations in its loading. CONCLUSION: Centrifugal spinning permits the fabrication of composite fibrous matrices from PHB and pectin. Incorporation of the polysaccharide into the fibres can be used to manipulate degradation behaviour and demonstrates a model for doping of matrices with active biological constituents. The unique features of the centrifugal spinning process, as illustrated by the structure of the fibres and the degradation profiles, suggest possible applications of centrifugally spun biopolymers as wound scaffolding devices and in tissue engineering.
Resumo:
A novel trileaflet polymer valve is a composite design of a biostable polymer poly(styrene-isobutylene-styrene) (SIBS) with a reinforcement polyethylene terephthalate (PET) fabric. Surface roughness and hydrophilicity vary with fabrication methods and influence leaflet biocompatibility. The purpose of this study was to investigate the biocompatibility of this composite material using both small animal (nonfunctional mode) and large animal (functional mode) models. Composite samples were manufactured using dip coating and solvent casting with different coating thickness (251μm and 50μm). Sample's surface was characterized through qualitative SEM observation and quantitative surface roughness analysis. A novel rat abdominal aorta model was developed to test the composite samples in a similar pulsatile flow condition as its intended use. The sample's tissue response was characterized by histological examination. Among the samples tested, the 25μm solvent-cast sample exhibited the smoothest surface and best biocompatibility in terms of tissue capsulation thickness, and was chosen as the method for fabrication of the SIBS valve. Phosphocholine was used to create a hydrophilic surface on selected composite samples, which resulted in improved blood compatibility. Four SIBS valves (two with phosphocholine modification) were implanted into sheep. Echocardiography, blood chemistry, and system pathology were conducted to evaluate the valve's performance and biocompatibility. No adverse response was identified following implantation. The average survival time was 76 days, and one sheep with the phosphocholine modified valve passed the FDA minimum requirement of 140 days with approximately 20 million cycles of valve activity. The explanted valves were observed under the aid of a dissection microscope, and evaluated via histology, SEM and X-ray. Surface cracks and calcified tissue deposition were found on the leaflets. In conclusion, we demonstrated the applicability of using a new rat abdominal aorta model for biocompatibility assessment of polymeric materials. A smooth and complete coating surface is essential for the biocompatibility of PET/SIBS composite, and surface modification using phosphocholine improves blood compatibility. Extrinsic calcification was identified on the leaflets and was associated with regions of surface cracks.