926 resultados para Complementary medice
Resumo:
Presence of surface glycoprotein in Piptocephalis virginiana that recognizes the host glycoproteins band c, reported earlier from our laboratory, was detected by immunofluorescence microscopy. Germinated spores of P. virginiana treated with Mortierella pusilla cell wall protein extract, primary antibodies prepared against glycoproteins band c and FITC-goat anti-rabbit IgG conjugate showed fluorescence. This indicated that on the surfaces of the biotrophic mycoparasite P. virginiana , there might be a complementary molecule which recognizes the glycoproteins band c from M. pusilla. Immunobinding analysis identified a glycoprotein of Mr 100 kDa from the mycoparasite which binds with the host glycoproteins band c, separately as well as collectively. Purification of this glycoprotein was achieved by (i) 60% ammonium sulfate precipitation, (ii) followed by heat treatment, and (iii) Sephadex G-IOO gel filtration. The glycoprotein was isolated by preparative polyacrylamide gel electrophoresis by cutting and elution. The purity of the protein ·was ascertained by SDS-PAGE and Western blot analysis. Positive reaction to periodic acid-Schiff reagent revealed the glycoprotein nature of this 100 kDa protein. Mannose was identified as a major sugar component of this glycoprotein by using a BoehringerMannheim Glycan Differentiation Kit. Electrophoretically purified glycoprotein was used to raIse polyclonal antibody in rabbit. The specificity of the antibody was determined by dot-immunobinding test and western-blot analysis. Immunofluorescence mIcroscopy revealed surface localization of the protein on the germ tube of Piptocephalis virginiana. Fluorescence was also observed at the surfaceJ of the germinated spores and hyphae of the host, M. pusilla after treatment with complementary protein from P. virginiana, primary antibody prepared against the complementary protein and FITC-goat anti-rabbit IgG conjugate.
Resumo:
In this paper equienergetic self-complementary graphs on p vertices for every p = 4k; k ¸ 2 and p = 24t + 1; t ¸ 3 are constructed
Resumo:
In the present paper we discuss and compare two different energy decomposition schemes: Mayer's Hartree-Fock energy decomposition into diatomic and monoatomic contributions [Chem. Phys. Lett. 382, 265 (2003)], and the Ziegler-Rauk dissociation energy decomposition [Inorg. Chem. 18, 1558 (1979)]. The Ziegler-Rauk scheme is based on a separation of a molecule into fragments, while Mayer's scheme can be used in the cases where a fragmentation of the system in clearly separable parts is not possible. In the Mayer scheme, the density of a free atom is deformed to give the one-atom Mulliken density that subsequently interacts to give rise to the diatomic interaction energy. We give a detailed analysis of the diatomic energy contributions in the Mayer scheme and a close look onto the one-atom Mulliken densities. The Mulliken density ρA has a single large maximum around the nuclear position of the atom A, but exhibits slightly negative values in the vicinity of neighboring atoms. The main connecting point between both analysis schemes is the electrostatic energy. Both decomposition schemes utilize the same electrostatic energy expression, but differ in how fragment densities are defined. In the Mayer scheme, the electrostatic component originates from the interaction of the Mulliken densities, while in the Ziegler-Rauk scheme, the undisturbed fragment densities interact. The values of the electrostatic energy resulting from the two schemes differ significantly but typically have the same order of magnitude. Both methods are useful and complementary since Mayer's decomposition focuses on the energy of the finally formed molecule, whereas the Ziegler-Rauk scheme describes the bond formation starting from undeformed fragment densities
Resumo:
The wide-ranging survey of twisted growth in polymers by Lotz and Cheng cites extensive evidence consistent with the relief of surface stress being the underlying cause. This complementary note contributes to the discussion by making three main points. First, it is necessary to go further and explain the key issue of how a consistent twist is maintained when, as commonly, this habit has a lower symmetry than the crystallographic lattice. Detailed study has shown that, in polyethylene, this occurs by reorganization of the initial fold surfaces. Second, the suggested explanation by Keith and Padden that. in polyethylene, the asymmetric habit derives from molecules adding to lamellae with inclined fold surfaces is invalid being doubly inconsistent with observation. Third, twisting has now been linked to faster growth by study of row structures in polyethylene. This produces inherently rough fold surfaces in Regime II whose internal stresses drive reorganization and twisting. For slower (Regime I) growth, fold surfaces form with and maintain ordered packing so providing no basis for twisting. These new insights radically alter the context of twisted growth and provide a firm factual basis for further work. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Here we report the crystal structure of the DNA heptanucleotide sequence d(GCATGCT) determined to a resolution of 1.1 Angstrom. The sequence folds into a complementary loop structure generating several unusual base pairings and is stabilised through cobalt hexammine and highly defined water sites. The single stranded loop is bound together through the G(N2)-C(O2) intra-strand H-bonds for the available G/C residues, which form further Watson-Crick pairings to a complementary sequence, through 2-fold symmetry, generating a pair of non-planar quadruplexes at the heart of the structure. Further, four adenine residues stack in pairs at one end, H-bonding through their N7-N6 positions, and are additionally stabilised through two highly conserved water positions at the structural terminus. This conformation is achieved through the rotation of the central thymine base at the pinnacle of the loop structure, where it stacks with an adjacent thymine residue within the lattice. The crystal packing yields two halved biological units, each related across a 2-fold symmetry axis spanning a cobalt hexammine residue between them, which stabilises the quadruplex structure through H-bonds to the phosphate oxygens and localised hydration.
Resumo:
Pharmacists need to know about complementary therapies so they can advise patients on their suitability, and also their compatibility with conventional drugs. This article discusses, from a pharmaceutical perspective, the types of therapies available, their applications and indications, and issues surrounding the placebo effect.
Resumo:
The Baja California Peninsula is home to 85 species of cacti, of which 54 are endemic, highlighting its importance as a cactus diverse region within Mexico. Many species are under threat due to collection pressure and habitat loss, but ensuring maximal protection of cacti species requires a better understanding of diversity patterns. We assessed species richness, endemism, and phylogenetic and morphological diversity using herbarium records and a molecular phylogeny for 82 species of cacti found in the peninsula. The four diversity measures were estimated for the existing nature reserve network and for 314 hexagrids of 726 km2. Using the hexagrid data, we surveyed our results for areas that best complement the current protected cacti diversity in the Baja California Peninsula. Currently, the natural reserve network in Baja shelters an important amount of the cacti diversity (74% of the species, 85.9% of the phylogenetic diversity, 76% of endemics and all the growth forms). While species richness produced several solutions to complement the diversity protected, by identifying priority species (endemic species with high contribution to overall PD) one best solution is reported. Three areas (San Matías, Magdalena and Margarita Islands and El Triunfo), selected using species richness, PD and endemism, best complement the diversity currently protected, increasing species richness to 89%, PD to 94% and endemism to 89%, and should be considered in future conservation plans. Two of these areas could be included within nature reserves already established.
Resumo:
The volume–volatility relationship during the dissemination stages of information flow is examined by analyzing various theories relating volume and volatility as complementary rather than competing models. The mixture of distributions hypothesis, sequential arrival of information hypothesis, the dispersion of beliefs hypothesis, and the noise trader hypothesis all add to the understanding of how volume and volatility interact for different types of futures traders. An integrated picture of the volume–volatility relationship is provided by investigating the dynamic linear and nonlinear associations between volatility and the volume of informed (institutional) and uninformed (the general public) traders. In particular, the trading behavior explanation for the persistence of futures volatility, the effect of the timing of private information arrival, and the response of institutional traders to excess noise trading risk is examined