975 resultados para Compact wideband antenna
Resumo:
In recent years, there is a visible trend for products/services which demand seamless integration of cellular networks, WLANs and WPANs. This is a strong indication for the inclusion of high speed short range wireless technology in future applications. In this context UWB radio has a significant role to play as an extension/complement to existing cellular/access technology. In the present work, three major types of ultra wide band planar antennas are investigated: Monopole and Slot. Three novel compact UWB antennas, suitable for poratble applications, are designed and characterized, namely 1) Ground modified monopole 2) Serrated monopole 3) Triangular slot The performance of these designs have been studied using standard simulation tools used in industry/academia and they have been experimentally verified. Antenna design guidelines are also deduced by accounting the resonances in each structure. In addition to having compact sized, high efficiency and broad bandwidth antennas, one of the major criterion in the design of impulse-UWB systems have been the transmission of narrow band pulses with minimum distortion. The key challenge is not only to design a broad band antenna with constant and stable gain but to maintain a flat group delay or linear phase response in the frequency domain or excellent transient response in time domain. One of the major contributions of the thesis lies in the analysis of the frequency and timedomain response of the designed UWB antennas to confirm their suitability for portable pulsed-UWB systems. Techniques to avoid narrowband interference by engraving narrow slot resonators on the antenna is also proposed and their effect on a nano-second pulse have been investigated
Resumo:
A compact microstrip multiband antenna on a modified ground plane which can operate over the bands starting from 900 MHz to 5.35 GHz which includes the GSM (880-960) GPS (1568-1592 MHz), DCS (1710-1880 MHz), and PCS (1850- 1990 MHz). UMTS (1920-2170 MHz), IEEE 802.11 b/g (2400- 2484) and WLAN IEEE 802.11a band (5.15-5.35) is reported in this paper. The overall dimension of the antenna is 33 x 33 mm2 including the top patch with a dimension 22 x 22 mm2. The experimental results of the antenna are presented in this paper. The results confirm that the antenna exhibits wide band characteristics and covers 7 bands of operation
Resumo:
A printed compact coplanar waveguide fed triangular slot antenna for ultra wide band (UWB) communication systems is presented. The antenna comprises of a triangular slot loaded ground plane with a T shaped strip radiator to enhance the bandwidth and radiation. This compact antenna has a dimension of 26mm×26mm when printed on a substrate of dielectric constant 4.4 and thickness 1.6mm. Design equations are implemented and validated for different substrates. The pulse distortion is insignificant and is verified by the measured antenna performance with high signal fidelity and virtually steady group delay. The simulation and experiment reveal that the proposed antenna exhibits good impedance match, stable radiation patterns and constant gain and group delay over the entire operating band
Resumo:
A compact Co-Planar Waveguide (CPW) fed antenna operating at 2.4GHz with 300MHz 2:1 VSWR bandwidth is presented. Compared to a conventional quarter wavelength CPW fed monopole antenna, the aperture area reduction of the present antenna is 85%. The prototype antenna fabricated on a substrate of εr = 4.4 and thickness 1.6mm is only 22x10x1.6mm3. This much size reduction and impedance matching is achieved by adjusting the signal to ground plane separation and meandering the ground plane of a 50Ω CPW transmission line
Resumo:
A compact coplanar waveguide-fed (CPW) monopole antenna for ultra-wideband wireless communication is presented. The proposed antenna comprises of a CPW-fed beveled rectangular patch with a modified slotted ground. The overall size of the antenna is 30 mm 27 mm 1.6 mm. The lower edge of the band is attained by properly decoupling the resonant frequencies due to the extended ground plane and the beveled rectangular patch of the antenna. The upper edge of the radiating band is enhanced by beveling the ground plane corners near the feed point. Experimental results show that the designed antenna operates in the 2.7–12 GHz band, for S11 10 dB with a gain of 2.7–5 dBi. Both the frequency domain and time domain characteristics of the antenna are investigated using antenna transfer function. It is observed that the antenna exhibits identical radiation patterns and reasonable transient characteristics over the entire operating band
Resumo:
A compact coplanar waveguide (CPW)-fed uniplanar antenna with harmonic suppression characteristics is presented. The above characteristics are achieved by properly modifying the ground plane and adjusting the signal strip of an open-ended CPW-fed transmission line. The simulated and experimental characteristics of the antenna are presented, compared, and discussed.
Resumo:
A Coplanar waveguide fed compact planar monopole antenna with a modified ground plane is presented. Measured and simulated results reveal that the antenna operates in the Ultra Wide Band with almost constant group delay throughout the band. Developed design equations of the antenna are validated for different substrates. Time domain performance of the antenna is also discussed in order to assess its suitability for impulse radio applications
Resumo:
An electrically small, broadband-modified, truncated ground metamaterial EZ antenna is presented. This, a modified EZ antenna system, achieves a larger bandwidth of the order of 650 MHz by adjusting the metamaterial-inspired meandered ground element fed by a top loaded monopole. The design is devoid of the large ground planes and the external parasitic elements used in conventional designs for achieving proper impedance matching characteristics. The antenna requires a small foot print of kg/5 3 kg/10, where kg is the guided wavelength corresponding to the lowest frequency of operation, when printed on a substrate of dielectric constant 4.4 and thickness 1.6 mm. The antenna offers a 2:1 VSWR bandwidth from 750 MHz to 1.4 GHz, which covers CDMA, GSM, and ISM bands
Resumo:
A compact coplanar waveguide (CPW) fed uniplanar antenna for Quad-band applications is presented. The Quad-band operation is realized by imposing various current paths in a modified T-shaped radiating element. The antenna covers GSM 900, DCS 1800, IEEE802.11.a, IEEE802.11.b and HiperLAN-2 bands and exhibits good radiation characteristics. This low profile antenna has a dimension of 32mm×31mmwhen printed on a substrate of dielectric constant 4.4 and height 1.6mm. Details of design with experimental and simulated results are presented
Resumo:
This paper presents the design and development of a compact CPW fed quad band antenna. This low profile antenna has a dimension of 32mmx31mm when printed on a substrate of dielectric constant 4.4 and height 1.6mm. The antenna covers GSM 900, DCS 1800, IEEE802.11.a, IEEE802.11.b and HiperLAN2 bands. The antenna exhibits good radiation characteristics with moderate gain
Resumo:
This Doctoral Thesis entitled Contribution to the analysis, design and assessment of compact antenna test ranges at millimeter wavelengths aims to deepen the knowledge of a particular antenna measurement system: the compact range, operating in the frequency bands of millimeter wavelengths. The thesis has been developed at Radiation Group (GR), an antenna laboratory which belongs to the Signals, Systems and Radiocommunications department (SSR), from Technical University of Madrid (UPM). The Radiation Group owns an extensive experience on antenna measurements, running at present four facilities which operate in different configurations: Gregorian compact antenna test range, spherical near field, planar near field and semianechoic arch system. The research work performed in line with this thesis contributes the knowledge of the first measurement configuration at higher frequencies, beyond the microwaves region where Radiation Group features customer-level performance. To reach this high level purpose, a set of scientific tasks were sequentially carried out. Those are succinctly described in the subsequent paragraphs. A first step dealed with the State of Art review. The study of scientific literature dealed with the analysis of measurement practices in compact antenna test ranges in addition with the particularities of millimeter wavelength technologies. Joint study of both fields of knowledge converged, when this measurement facilities are of interest, in a series of technological challenges which become serious bottlenecks at different stages: analysis, design and assessment. Thirdly after the overview study, focus was set on Electromagnetic analysis algorithms. These formulations allow to approach certain electromagnetic features of interest, such as field distribution phase or stray signal analysis of particular structures when they interact with electromagnetic waves sources. Properly operated, a CATR facility features electromagnetic waves collimation optics which are large, in terms of wavelengths. Accordingly, the electromagnetic analysis tasks introduce an extense number of mathematic unknowns which grow with frequency, following different polynomic order laws depending on the used algorithmia. In particular, the optics configuration which was of our interest consisted on the reflection type serrated edge collimator. The analysis of these devices requires a flexible handling of almost arbitrary scattering geometries, becoming this flexibility the nucleus of the algorithmia’s ability to perform the subsequent design tasks. This thesis’ contribution to this field of knowledge consisted on reaching a formulation which was powerful at the same time when dealing with various analysis geometries and computationally speaking. Two algorithmia were developed. While based on the same principle of hybridization, they reached different order Physics performance at the cost of the computational efficiency. Inter-comparison of their CATR design capabilities was performed, reaching both qualitative as well as quantitative conclusions on their scope. In third place, interest was shifted from analysis - design tasks towards range assessment. Millimetre wavelengths imply strict mechanical tolerances and fine setup adjustment. In addition, the large number of unknowns issue already faced in the analysis stage appears as well in the on chamber field probing stage. Natural decrease of dynamic range available by semiconductor millimeter waves sources requires in addition larger integration times at each probing point. These peculiarities increase exponentially the difficulty of performing assessment processes in CATR facilities beyond microwaves. The bottleneck becomes so tight that it compromises the range characterization beyond a certain limit frequency which typically lies on the lowest segment of millimeter wavelength frequencies. However the value of range assessment moves, on the contrary, towards the highest segment. This thesis contributes this technological scenario developing quiet zone probing techniques which achieves substantial data reduction ratii. Collaterally, it increases the robustness of the results to noise, which is a virtual rise of the setup’s available dynamic range. In fourth place, the environmental sensitivity of millimeter wavelengths issue was approached. It is well known the drifts of electromagnetic experiments due to the dependance of the re sults with respect to the surrounding environment. This feature relegates many industrial practices of microwave frequencies to the experimental stage, at millimeter wavelengths. In particular, evolution of the atmosphere within acceptable conditioning bounds redounds in drift phenomena which completely mask the experimental results. The contribution of this thesis on this aspect consists on modeling electrically the indoor atmosphere existing in a CATR, as a function of environmental variables which affect the range’s performance. A simple model was developed, being able to handle high level phenomena, such as feed - probe phase drift as a function of low level magnitudes easy to be sampled: relative humidity and temperature. With this model, environmental compensation can be performed and chamber conditioning is automatically extended towards higher frequencies. Therefore, the purpose of this thesis is to go further into the knowledge of millimetre wavelengths involving compact antenna test ranges. This knowledge is dosified through the sequential stages of a CATR conception, form early low level electromagnetic analysis towards the assessment of an operative facility, stages for each one of which nowadays bottleneck phenomena exist and seriously compromise the antenna measurement practices at millimeter wavelengths.
Resumo:
This article presents an array antenna with beam-steering capability in azimuth over a wide frequency band using real-valued weighting coefficients that can be realized in practice by amplifiers or attenuators. The described beamforming scheme relies on a 2D (instead of 1D) array structure in order to make sure that there are enough degrees of freedom to realize a given radiation pattern in both the angular and frequency domains. In the presented approach, weights are determined using an inverse discrete Fourier transform (IDFT) technique by neglecting the mutual coupling between array elements. Because of the presence of mutual coupling, the actual array produces a radiation pattern with increased side-lobe levels. In order to counter this effect, the design aims to realize the initial radiation pattern with a lower side-lobe level. This strategy is demonstrated in the design example of 4 X 4 element array. (C) 2005 Wiley Periodicals. Inc.