970 resultados para Cochlea - blood supply
Resumo:
Molecular responses to hypoxia restore oxygen homeostasis and promote cell survival, and are mainly regulated through the activation of the hypoxia-inducible transcription factor (HIF)-1 and its target genes. In this study we questioned whether surgically depleting the liver s arterial blood supply, by clamping the hepatic artery (HA), would be sufficient to mount a hypoxia-driven molecular response, the up-regulation of hepatoprotective genes and thereby protect the liver from subsequent damaging insults.;;The HA of normal male Balb/c mice was clamped with a micro vascular clip for 2 hours. The liver s saturated oxygen concentration (SO2) was measured using an O2C surface probe (LEA-Medizintechnik) and interstitial fluid was collected with microdialysis membranes to monitor tissue damage. Mice without clamping served as sham operated controls. Interstitial fluid was assessed for lactate pyruvate (L/P) and glycerol content and the mRNA of hepatoprotective genes was analyzed by real time PCR. Subsequently, mice received either a tail vein injection of anti-Fas antibody (Jo2, 0.2 mg/kg) or the liver was made ischemic (60min) followed by 6 hours reperfusion. Caspase 3-activity and cleaved lamin A were used to assess apoptosis. In separate groups, animal were monitored for survival.;;After 30min of clamping the HA the SO2 of the liver decreased and remained at a reduced level for up to 2 hours, without an increase in L/P ratio or glycerol release. We demonstrate the activation of a hypoxia-inducible signaling pathway by the stabilization of HIF-1 protein (Western blot) and by an increase of its target gene, Epo, mRNA. There was an up-regulation of the hepatoprotective genes IL-6, IGFBP-1, HO-1 and A20 mRNA. When subsequently injected with Jo2, animals preconditioned with HA clamping, had a significantly decreased caspase-3 activity (avg21044 vs. avg3637; p=0.001, T-test) and there were fewer positive cells for cleaved Lamin A. The survival probability (10.5 hours, n=12) of mice with HA clamping was significantly higher (3.2 hours, n=13; p=0.014, Logrank test). Likewise, survival after 60 minutes of partial hepatic ischemia and 6 hours of reperfusion was reduced from 86% in mice with pretreatment by HA clamping to 56% in sham treated controls.;;This study demonstrates that a localized hypoxic stress can be achieved by surgically removing the livers arterial blood supply. Furthermore it can stimulate a hepatoprotective response that protects the liver against Fas-mediated apoptosis and ischemia-reperfusion injury. Our findings offer an innovative approach to induce hepatoprotective genes to defend the liver against subsequent insults.
Resumo:
Although rarely used, the abductor hallucis muscle has its indications in coverage of small defects at the medial aspect of the hindfoot as a proximally based muscle flap. The authors describe a 69-year-old female patient in whom the abductor hallucis muscle was used as a distally based flap to reconstruct a defect in the forefoot. An anatomic study was undertaken on two cadaveric feet to explore the practicality of the distally based abductor hallucis muscle flap before it was applied clinically. The distally based abductor muscle flap receives its blood supply from minor and major pedicles in a retrograde fashion from both the dorsal arterial network and the deep plantar system, through communicating branches with the medial plantar artery distally. Transposition of the distally based hallucis flap is only advisable in individuals who have no vascular compromise in the lower leg and foot. To the authors' knowledge, this modification has not yet been described in the available literature.
Resumo:
Osteotomies of the proximal femur for hip joint conditions are normally done at the intertrochanteric or subtrochanteric level. Intra-articular osteotomies would be more direct and therefore allow a more powerful correction with no or very little undesired side correction. However, concerns about the risk of vascular damage and osteonecrosis of the femoral head have so far basically excluded this technique from practical use. Based on detailed knowledge of the vascular anatomy of the proximal femur, an approach to safely dislocate the femoral head has been described and successfully performed. Experience as well as further studies of femoral head perfusion allowed a substantial extension of this approach, with subperiosteal exposure of the circumference of the femoral neck with constant intraoperative control of the blood supply to the head. Using the extended retinacular soft-tissue flap, four surgical techniques (relative neck lengthening, subcapital realignment in slipped capital femoral epiphysis, true femoral neck osteotomy, and femoral head reduction osteotomy) evolved or became safer with respect to perfusion of the femoral head. The extended retinacular soft-tissue flap offers the technical and biologic possibility for a new class of intra articular procedures. Although meticulous execution of the surgical steps is important, the procedures have a high level of safety for femoral head perfusion.
Resumo:
Surgical dislocation of the hip is a safe and established technique for treating femoroacetabular impingement. The complication rate is low, and if the correct technique that respects the blood supply is used, femoral head necrosis does not occur. The most frequent complications are minor ectopic bone formation and nonunion of the greater trochanter. Surgical treatment includes the correction of femoral and acetabular pathology. Clinically, in approximately 75-80% of cases a good-to-excellent result can be obtained. However, patients with advanced degenerative changes (exceeding stage 1 osteoarthritis using the Tönnis score) have worse outcomes. It has also been shown that preservation of the labrum has a significant influence on both clinical outcome and progression of osteoarthritis: It seems that preservation of the labrum is mandatory.
Resumo:
PURPOSE: The purpose of this study was to evaluate the precision of central hip arthroscopy in the assessment and treatment of pincer-type femoroacetabular impingement (FAI) avoiding the posterolateral portal, with its close proximity to the main arterial blood supply of the femoral head, the medial circumflex femoral artery. METHODS: Seven human cadaveric hips underwent arthroscopic trimming of the acetabular labrum and rim along a preoperatively defined 105 degrees arc of resection for treatment of a presumed pincer-type lesion. After the arthroscopic procedure, all specimens were dissected and measured for evaluation of the location, quantity, and quality of the area undergoing resection. RESULTS: The difference between the actual and planned arc of resection was 18.7 degrees +/- 4.7 degrees (range, 2 degrees to 34 degrees). This was mainly because of a lack of accuracy in the presumed posterior starting point (PSP), with a mean deviation of 19 degrees +/- 3.4 degrees (range, 10 degrees to 36 degrees). Correlation analysis showed that variance in the arc of resection was mainly dependent on the PSP (r = 0.739, P = .058). CONCLUSIONS: Central hip arthroscopy is a feasible option in treating anterosuperior pincer-type FAI by use of the anterior and anterolateral portals only. This cadaveric study showed that there is a significant risk of underestimating the actual arc of resection compared with the planned arc of resection for posterosuperior pincer-type lesions because of the modest accuracy in determining the PSP of the resection. CLINICAL RELEVANCE: Accurate preoperative planning and arthroscopic identification of anatomic landmarks at the acetabular side are crucial for the definition of the appropriate starting and ending points in the treatment of pincer-type FAI. Whereas anterosuperior pincer-type lesions can be addressed very precisely with our technique, the actual resection of posterosuperior lesions averaged 19 degrees less than the planned resection, which may have clinical implications.
Resumo:
Plates used for fracture fixation produce vascular injury to the underlying cortical bone. During the recovery of the blood supply, temporary osteoporosis is observed as a result of Haversian remodeling of the necrotic bone. This process temporarily reduces the strength of the bone. We tackled the postulate that quantitative differences exist between animal species, and in different bones within the same species, due to variations in the relative importance of the endosteal and periosteal blood supplies. Using implants scaled to the size of the bone, we found comparable cortical vascular damage in the sheep and in the dog, and in the tibia and femur of each animal. We observed a significant reduction in cortical vascular damage using plates that had a smaller contact area with the underlying bone. No significant difference in cortical vascular damage was noted in animals of different ages.
Resumo:
Blood supply is a critical issue in most tissue engineering approaches for large defect healing. As vessel ingrowth from surrounding tissues is proven to be insufficient, current strategies are focusing on the neo-vascularisation process. In the present study, we developed an in vitro pre-vascularised construct using 3D polyurethane (PU) scaffolds, based on the association of human Endothelial Progenitor Cells (EPC, CD34+ and CD133+) with human Mesenchymal Stem Cells (MSC). We showed the formation of luminal tubular structures in the co-seeded scaffolds as early as day 7 in culture. These tubular structures were proven positive for endothelial markers von Willebrand Factor and PECAM-1. Of special significance in our constructs is the presence of CD146-positive cells, as a part of the neovasculature scaffolding. These cells, coming from the mesenchymal stem cells population (MSC or EPC-depleted MSC), also expressed other markers of pericyte cells (NG2 and αSMA) that are known to play a pivotal function in the stabilisation of newly formed pre-vascular networks. In parallel, in co-cultures, osteogenic differentiation of MSCs occurred earlier when compared to MSCs monocultures, suggesting the close cooperation between the two cell populations. The presence of angiogenic factors (from autologous platelet lysates) in association with osteogenic factors seems to be crucial for both cell populations' cooperation. These results are promising for future clinical applications, as all components (cells, growth factors) can be prepared in an autologous way.
C1 esterase inhibitor reduces lower extremity ischemia/reperfusion injury and associated lung damage
Resumo:
BACKGROUND Ischemia/reperfusion injury of lower extremities and associated lung damage may result from thrombotic occlusion, embolism, trauma, or surgical intervention with prolonged ischemia and subsequent restoration of blood flow. This clinical entity is characterized by high morbidity and mortality. Deprivation of blood supply leads to molecular and structural changes in the affected tissue. Upon reperfusion inflammatory cascades are activated causing tissue injury. We therefore tested preoperative treatment for prevention of reperfusion injury by using C1 esterase inhibitor (C1 INH). METHODS AND FINDINGS Wistar rats systemically pretreated with C1 INH (n = 6), APT070 (a membrane-targeted myristoylated peptidyl construct derived from human complement receptor 1, n = 4), vehicle (n = 7), or NaCl (n = 8) were subjected to 3h hind limb ischemia and 24h reperfusion. The femoral artery was clamped and a tourniquet placed under maintenance of a venous return. C1 INH treated rats showed significantly less edema in muscle (P<0.001) and lung and improved muscle viability (P<0.001) compared to controls and APT070. C1 INH prevented up-regulation of bradykinin receptor b1 (P<0.05) and VE-cadherin (P<0.01), reduced apoptosis (P<0.001) and fibrin deposition (P<0.01) and decreased plasma levels of pro-inflammatory cytokines, whereas deposition of complement components was not significantly reduced in the reperfused muscle. CONCLUSIONS C1 INH reduced edema formation locally in reperfused muscle as well as in lung, and improved muscle viability. C1 INH did not primarily act via inhibition of the complement system, but via the kinin and coagulation cascade. APT070 did not show beneficial effects in this model, despite potent inhibition of complement activation. Taken together, C1 INH might be a promising therapy to reduce peripheral ischemia/reperfusion injury and distant lung damage in complex and prolonged surgical interventions requiring tourniquet application.
Resumo:
While modern treatments have led to a dramatic improvement in survival for pediatric malignancy, toxicities are high and a significant proportion of patients remain resistant. Gene transfer offers the prospect of highly specific therapies for childhood cancer. "Corrective" genes may be transferred to overcome the genetic abnormalities present in the precancerous cell. Alternatively, genes can be introduced to render the malignant cell sensitive to therapeutic drugs. The tumor can also be attacked by decreasing its blood supply with genes that inhibit vascular growth. Another possible approach is to modify normal tissues with genes that make them more resistant to conventional drugs and/or radiation, thereby increasing the therapeutic index. Finally, it may be possible to attack the tumor indirectly by using genes that modify the behavior of the immune system, either by making the tumor more immunogenic, or by rendering host effector cells more efficient. Several gene therapy applications have already been reported for pediatric cancer patients in preliminary Phase 1 studies. Although no major clinical success has yet been achieved, improvements in gene delivery technologies and a better understanding of mechanisms of tumor progression and immune escape have opened new perspectives for the cure of pediatric cancer by combining gene therapy with standard therapeutic available treatments.
Resumo:
Habituelle Aborte Ein Spontanabort ereignet sich bei etwa 15 % aller klinisch festgestellten Schwangerschaften. Vom betroffenen Paar wird er ausnahmslos als äußerst traumatisch erlebt. Insbesondere gilt dies beim habituellen Abort (≥ 3 Aborte in Folge), der etwa 1 % der Schwangerschaften betrifft. In der Hoffnung, weitere Aborte zu verhindern, werden entsprechend große Anstrengungen unternommen, die jeweilige Ursache zu eruieren. Gerinnungsphysiologische Einflüsse Pathophysiologisch spielen nebst organischen und zytogenetischen Anomalien beim Fetus vermutlich auch gerinnungsphysiologische Einflüsse eine ursächliche Rolle, insbesondere erworbene und hereditäre prokoagulatorische Störungen. Diese können das im Rahmen der Schwangerschaft schon physiologisch erhöhte Gerinnungspotenzial zusätzlich verstärken und damit die Blutversorgung des Fetus potenziell behindern, was mit der Gefahr seiner Abstoßung einhergeht. Thrombophilie Auch wenn der diesbezügliche Beweis im Einzelfall schwierig zu erbringen ist, erscheint eine ungünstige Beeinflussung des Abortrisikos durch erworbene und hereditäre Thrombophilien plausibel. Daraus ergibt sich unschwer die Folgerung oder Hoffnung, dass antiaggregatorische und antikoagulatorische Maßnahmen eine günstige Wirkung haben könnten. Der vorliegende Beitrag geht auf die bekannten sowie teils auch nur vermuteten pathophysiologischen Mechanismen und die sich daraus ergebenden therapeutischen bzw. präventiven Möglichkeiten ein.
Resumo:
The coronary collateral circulation is an alternative source of blood supply to a myocardial area jeopardized by the failure of the stenotic or occluded vessel to provide enough blood flow to this region. Until recently, only qualitative or semiqualitative methods have been available for the assessment of the coronary collateral circulation in humans, such as the patient's history of walk-through angina pectoris, the registration of intracoronary ECG signs for myocardial ischaemia or angina pectoris during coronary occlusion, or coronary angiographic classification (score 0-3) of collaterals. Studies of coronary wedge pressure measurements distal of a balloon-occluded coronary artery and the recent advent of ultrathin pressure and Doppler angioplasty guidewires have made it possible to obtain pressure or flow velocity data in remote vascular areas and, thus, to calculate functional variables for coronary collateral flow. Those coronary occlusive pressure- and flow velocity-derived parameters express collateral flow as a fraction of antegrade coronary flow during vessel patency of the collateral-receiving vessel. They are both interchangeable, and they have been validated in comparison to 'traditional' methods and against each other. The possibility of accurately measuring coronary collateral flow indices in humans undergoing coronary balloon angioplasty opens areas of investigation of the pathogenesis, pathophysiology and therapeutic promotion of the collateral circulation previously reserved for exclusively experimental studies. The purpose of this article is to review several clinically available methods for the functional characterization of the coronary collateral circulation.
Resumo:
BACKGROUND Over 80% of strokes result from ischemic damage to the brain due to an acute reduction in the blood supply. Around 25-35% of strokes present with large vessel occlusion, and the patients in this category often present with severe neurological deficits. Without early treatment, the prognosis is poor. Stroke imaging is critical for assessing the extent of tissue damage and for guiding treatment. SUMMARY This review focuses on the imaging techniques used in the diagnosis and treatment of acute ischemic stroke, with an emphasis on those involving the anterior circulation. Key Message: Effective and standardized imaging protocols are necessary for clinical decision making and for the proper design of prospective studies on acute stroke. CLINICAL IMPLICATIONS Each minute without treatment spells the loss of an estimated 1.8 million neurons ('time is brain'). Therefore, stroke imaging must be performed in a fast and efficient manner. First, intracranial hemorrhage and stroke mimics should be excluded by the use of computed tomography (CT) or magnetic resonance imaging (MRI). The next key step is to define the extent and location of the infarct core (values of >70 ml, >1/3 of the middle cerebral artery (MCA) territory or an ASPECTS score ≤ 7 indicate poor clinical outcome). Penumbral imaging is currently based on the mismatch concept. It should be noted that the penumbra is a dynamic zone and can be sustained in the presence of good collateral circulation. A thrombus length of >8 mm predicts poor recanalization after intravenous thrombolysis.
Resumo:
Ischaemic spinal cord injury (SCI) remains the Achilles heel of open and endovascular descending thoracic and thoracoabdominal repair. Neurological outcomes have improved coincidentially with the introduction of neuroprotective measures. However, SCI (paraplegia and paraparesis) remains the most devastating complication. The aim of this position paper is to provide physicians with broad information regarding spinal cord blood supply, to share strategies for shortening intraprocedural spinal cord ischaemia and to increase spinal cord tolerance to transitory ischaemia through detection of ischaemia and augmentation of spinal cord blood perfusion. This study is meant to support physicians caring for patients in need of any kind of thoracic or thoracoabdominal aortic repair in decision-making algorithms in order to understand, prevent or reverse ischaemic SCI. Information has been extracted from focused publications available in the PubMed database, which are cohort studies, experimental research reports, case reports, reviews, short series and meta-analyses. Individual chapters of this position paper were assigned and after delivery harmonized by Christian D. Etz, Ernst Weigang and Martin Czerny. Consequently, further writing assignments were distributed within the group and delivered in August 2014. The final version was submitted to the EJCTS for review in September 2014.
Resumo:
The nail unit is the largest and a rather complex skin appendage. It is located on the dorsal aspect of the tips of fingers and toes and has important protective and sensory functions. Development begins in utero between weeks 7 and 8 and is fully formed at birth. For its correct development, a great number of signals are necessary. Anatomically, it consists of 4 epithelial components: the matrix that forms the nail plate; the nail bed that firmly attaches the plate to the distal phalanx; the hyponychium that forms a natural barrier at the physiological point of separation of the nail from the bed; and the eponychium that represents the undersurface of the proximal nail fold which is responsible for the formation of the cuticle. The connective tissue components of the matrix and nail bed dermis are located between the corresponding epithelia and the bone of the distal phalanx. Characteristics of the connective tissue include: a morphogenetic potency for the regeneration of their epithelia; the lateral and proximal nail folds form a distally open frame for the growing nail; and the tip of the digit has rich sensible and sensory innervation. The blood supply is provided by the paired volar and dorsal digital arteries. Veins and lymphatic vessels are less well defined. The microscopic anatomy varies from nail subregion to subregion. Several different biopsy techniques are available for the histopathological evaluation of nail alterations.
Resumo:
The coronary collateral circulation provides an alternative source of blood supply to myocardium jeopardised by ischaemia. Collaterals enlarge with obstructive coronary artery disease to allow bulk flow, but blood flow deliverable by the native, pre-formed collateral extent can already be sizeable. Genetic determinants contribute significantly to the wide variability observed in both native collateral extent and its capacity to enlarge, and the severity of the coronary stenosis is the most significant environmental determinant for collateral enlargement. The protective effect of a well-developed coronary collateral circulation translates into relevant improvements in all-cause and cardiac mortality in the acute and chronic phases of coronary artery disease, as well as into a reduction of future adverse cardiovascular events.