964 resultados para Cns Neurons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We assessed the role of NK-1 receptors (NK1R) expressing neurons in the locus coeruleus (LC) on cardiorespiratory responses to hypercapnia. To this end, we injected substance P-saporin conjugate (SP-SAP) to kill NK-1 immunoreactive (NK1R-ir) neurons or SAP alone as a control. Immunohistochemistry for NK1R, tyrosine hydroxylase (TH-ir) and Glutamic Acid Decarboxylase (GAD-ir) were performed to verify if NK1R-expressing neurons, catecholaminergic and/or GABAergic neurons were eliminated. A reduced NK1R-ir in the LC (72%) showed the effectiveness of the lesion. SP-SAP lesion also caused a reduction of TH-ir (66%) and GABAergic neurons (70%). LC SP-SAP lesion decreased by 30% the ventilatory response to 7% CO(2) and increased the heart rate (fH) during hypercapnia but did not affect MAP. The present data suggest that different populations of neurons (noradrenergic, GABAergic, and possibly others) in the LC express NK1R modulating differentially the hypercapnic ventilatory response, since catecholaminergic neurons are excitatory and GABAergic ones are inhibitory. Additionally, NK1R-ir neurons in the LC, probably GABAergic ones, seem to modulate fH during CO(2) exposure, once our previous data demonstrated that catecholaminergic lesion does not affect this variable. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The superior cervical ganglion (SCG) in mammals varies in structure according to developmental age, body size, gender, lateral asymmetry, the size and nuclear content of neurons and the complexity and synaptic coverage of their dendritic trees. In small and medium-sized mammals, neuron number and size increase from birth to adulthood and, in phylogenetic studies, vary with body size. However, recent studies on larger animals suggest that body weight does not, in general, accurately predict neuron number. We have applied design-based stereological tools at the light-microscopic level to assess the volumetric composition of ganglia and to estimate the numbers and sizes of neurons in SCGs from rats, capybaras and horses. Using transmission electron microscopy, we have obtained design-based estimates of the surface coverage of dendrites by postsynaptic apposition zones and model-based estimates of the numbers and sizes of synaptophysin-labelled axo-dendritic synaptic disks. Linear regression analysis of log-transformed data has been undertaken in order to establish the nature of the relationships between numbers and SCG volume (V(scg)). For SCGs (five per species), the allometric relationship for neuron number (N) is N=35,067xV (scg) (0.781) and that for synapses is N=20,095,000xV (scg) (1.328) , the former being a good predictor and the latter a poor predictor of synapse number. Our findings thus reveal the nature of SCG growth in terms of its main ingredients (neurons, neuropil, blood vessels) and show that larger mammals have SCG neurons exhibiting more complex arborizations and greater numbers of axo-dendritic synapses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stellate ganglion (SG) represents the main sympathetic input to the heart. This study aimed at investigating physical exercise-related changes in the quantitative aspects of SG neurons in treadmill-exercised Wistar rats. By applying state-of-the-art design-based stereology, the SG volume, total number of SG neurons, mean perikaryal volume of SG neurons, and the total volume of neurons in the whole SG have been examined. Arterial pressure and heart rate were also measured at the end of the exercise period. The present study showed that a low-intensity exercise training program caused a 12% decrease in the heart rate of trained rats. In contrast, there were no effects on systolic pressure, diastolic pressure, or mean arterial pressure. As to quantitative changes related to physical exercise, the main findings were a 21% increase in the fractional volume occupied by neurons in the SG, and an 83% increase in the mean perikaryal volume of SG neurons in treadmill-trained rats, which shows a remarkable neuron hypertrophy. It seems reasonable to infer that neuron hypertrophy may have been the result of a functional overload imposed on the SG neurons by initial posttraining sympathetic activation. From the novel stereological data we provide, further investigations are needed to shed light on the mechanistic aspect of neuron hypertrophy: what role does neuron hypertrophy play? Could neuron hypertrophy be assigned to the functional overload induced by physical exercise? (C) 2008 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relevance and property of studies related to stress effects on immune function are undisputable. All studies conducted on stress-immune relationships, however, provide from physical and/or psychological stressors. Indeed, as far as it is of our knowledge brain-innate immune responses were not analyzed after anxiogenic-like drugs use. The present experiment was then undertaken to analyze the effects of picrotoxin (0.3, 0.6 and 1.0 mg/kg doses) on behavior, macrophage activity, serum corticosterone and noradrenaline (NE) levels and turnover in the brain of adult mice. Results showed that picrotoxin treatment in mice: (1) decreased motor and rearing activities in an open-field; (2) decreased the number of entries into the plus-maze open-arms and decreased the time spent in the exploration of the plus-maze open-arms; (3) decreased both motor activity and the level of holes exploration in the hole-board; (4) increased the levels of serum corticosterone in dose-dependent way; (5) increased noradrenaline (NE) and MHPG levels and NE turnover in the hypothalamus; and (6) increased Staphylococcus aureus and PMA-induced macrophage oxidative burst. However, and contrary to that reported after physical or psychological stress, this drug induced no effects on macrophage phagocytosis and NE levels and turnover in the frontal cortex. The present results are thus showing that picrotoxin induces some but not all neuro-innate immunity changes previously reported for inescapable foot-shock and psychological stressors in mice. These facts suggest that this chemical stressor triggers CNS pathways that might be somehow different from those fired by inescapable foot-shock and psychological stressors, leading to different neuro-innate immune responses. (C) 2007 Elsevier Ltd. All fights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strong evidence obtained from in vivo and ex-vivo studies suggests the existence of interaction between dopaminergic and nitrergic systems. Some of the observations suggest a possible implication of nitric oxide (NO) in dopamine (DA) uptake mechanism. The present work investigated the interaction between both systems by examining the effect of an NO donor, sodium nitroprusside (SNP), associated with the indirect DA agonist, amphetamine (AMPH) on tritiated DA uptake in cultures of embryonic mesencephalic neurons. Consistent with the literature, both AMPH (1, 3 and 10 mu M) and SNP (300 mu M and 1 mM) inhibited DA uptake in a dose-dependent manner. In addition, the inhibition of DA uptake by AMPH (1 and 3 mu M) was significantly increased by the previous addition of SNP (300 mu M). The implication of NO in this interaction was supported by the fact that the free radical scavenger N-acetyl-L-Cysteine (500 mu M) significantly increased DA uptake and completely abolished the effect of SNP, leaving unaffected that from AMPH on DA uptake. Further, double-labeling immunohistochemistry showed the presence of tyrosine hydroxylase-(TH, marker for dopaminergic neurons) and neuronal NO synthase- (nNOS, marker for NO containing neurons) expressing neurons in mesencephalic cultures. Some dopaminergic neurons also express nNOS giving further support for a pre-synaptic interaction between both systems. This is the first work demonstrating in mesencephalic cultured neurons a combined effect of an NO donor and an indirect DA agonist on specific DA uptake. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Serotonergic (5-HT) neurons in the nucleus raphe obscurus (ROb) are involved in the respiratory control network. However, it is not known whether ROb 5-HT neurons play a role in the functional interdependence between central and peripheral chemoreceptors. Therefore, we investigated the role of ROb 5-HT neurons in the ventilatory responses to CO(2) and their putative involvement in the central-peripheral CO(2) chemoreceptor interaction in unanaesthetised rats. We used a chemical lesion specific for 5-HT neurons (anti-SERT-SAP) of the ROb in animals with the carotid body (CB) intact or removed (CBR). Pulmonary ventilation (V (E)), body temperature and the arterial blood gases were measured before, during and after a hypercapnic challenge (7% CO(2)). The lesion of ROb 5-HT neurons alone (CB intact) or the lesion of 5-HT neurons of ROb+CBR did not affect baseline V (E) during normocapnic condition. Killing ROb 5-HT neurons (CB intact) significantly decreased the ventilatory response to hypercapnia (p < 0.05). The reduction in CO(2) sensitivity was approximately 15%. When ROb 5-HT neurons lesion was combined with CBR (anti-SERT-SAP+CBR), the V (E) response to hypercapnia was further decreased (-31.2%) compared to the control group. The attenuation of CO(2) sensitivity was approximately 30%, and it was more pronounced than the sum of the individual effects of central (ROb lesion; -12.3%) or peripheral (CBR; -5.5%) treatments. Our data indicate that ROb 5-HT neurons play an important role in the CO(2) drive to breathing and may act as an important element in the central-peripheral chemoreception interaction to CO(2) responsiveness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prolactin (PRL) is tonically inhibited by dopamine (DA) released from neurons in the arcuate and periventricular nuclei. Kisspeptin plays a pivotal role in LH regulation. In rodents, kisspeptin neurons are found mostly in the anteroventral periventricular and arcuate nuclei, but the physiology of arcuate kisspeptin neurons is not completely understood. We investigated the role of kisspeptin in the control of hypothalamic DA and pituitary PRL secretion in adult rats. Intracerebroventricular kisspeptin-10 (Kp-10) elicited PRL release in a dose-dependent manner in estradiol (E2)-treated ovariectomized rats (OVX+E2), whereas no effect was found in oil-treated ovariectomized rats (OVX). Kp-10 increased PRL release in males and proestrous but not diestrous females. Associated with the increase in PRL release, intracerebroventricular Kp-10 reduced Fos-related antigen expression in tyrosine hydroxylase-immunoreactive (ir) neurons of arcuate and periventricular nuclei in OVX+E2 rats, with no effect in OVX rats. Kp-10 also decreased 3,4-dihydroxyphenylacetic acid concentration and 3,4-dihydroxyphenylacetic acid-DA ratio in the median eminence but not striatum in OVX+E2 rats. Double-label immunofluorescence combined with confocal microscopy revealed kisspeptin-ir fibers in close apposition to and in contact with tyrosine hydroxylase-ir perikarya in the arcuate. In addition, Kp-10 was not found to alter PRL release from anterior pituitary cell cultures regardless of E2 treatment. We provide herein evidence that kisspeptin regulates PRL release through inhibition of hypothalamic dopaminergic neurons, and that this mechanism is E2 dependent in females. These findings suggest a new role for central kisspeptin with possible implications for reproductive physiology. (Endocrinology 151: 3247-3257, 2010)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence indicates that endogenous opioids play a role in body temperature (Tb) regulation in mammals but no data exist about the involvement of the specific opioid receptors, mu, kappa and delta, in the reduction of Tb induced by hypoxia. Thus, we investigated the participation of these opioid receptors in the anteroventral preoptic region (AVPO) in hypoxic decrease of Th. To this end, Th of unanesthetized Wistar rats was monitored by temperature data loggers before and after intra-AVPO microinjection of the selective kappa-opioid receptor antagonist nor-binaltorphimine dihydrochloride (nor-BNI; 0.1 and 1.0 mu g/100 nL/animal), the selective mu-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2) cyclic (CTAP; 0.1 and 1.0 mu g/100 nL/animal), and the selective delta-opioid receptor antagonist Naltrindole (0.06 and 0.6 mu g/100 nL/animal) or saline (vehicle, 100 nu animal), during normoxia and hypoxia (7% inspired O(2)). Under normoxia, no effect of opioid antagonists on Th was observed. Hypoxia induced Th to reduce in vehicle group, a response that was inhibited by the microinjection intra-AVPO of nor-BNI. In contrast, CTAP and Naltrindole did not change Th during hypoxia but caused a longer latency for the return of Th to the normoxic values just after low O(2) exposure. Our results indicate the kappa-opioid receptor in the AVPO is important for the reduction of Th during hypoxia while the mu and delta receptors are involved in the increase of Th during normoxia post-hypoxia. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monoamines (noradrenaline (NA), adrenaline (AD), dopamine (DA) and serotonin (5-HT) are key neurotransmitters that are implicated in multiple physiological and pathological brain mechanisms, including control of respiration. The monoaminergic system is known to be widely distributed in the animal kingdom, which indicates a considerable degree of phylogenetic conservation of this system amongst vertebrates. Substantial progress has been made in uncovering the participation of the brain monoamines in the breathing regulation of mammals, since they are involved in the maturation of the respiratory network as well as in the modulation of its intrinsic and synaptic properties. On the other hand, for the non-mammalian vertebrates, most of the knowledge of central monoaminergic modulation in respiratory control, which is actually very little, has emerged from studies using anuran amphibians. This article reviews the available data on the role of brain monoaminergic systems in the control of ventilation in terrestrial vertebrates. Emphasis is given to the comparative aspects of the brain noradrenergic, adrenergic, dopaminergic and serotonergic neuronal groups in breathing regulation, after first briefly considering the distribution of monoaminergic neurons in the vertebrate brain. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eag1 (K(v)10.1) is the founding member of an evolutionarily conserved superfamily of voltage-gated K+ channels. In rats and humans Eag1 is preferentially expressed in adult brain but its regional distribution has only been studied at mRNA level and only in the rat at high resolution. The main aim of the present study is to describe the distribution of Eag1 protein in adult rat brain in comparison to selected regions of the human adult brain. The distribution of Eag1 protein was assessed using alkaline-phosphatase based immunohistochemistry. Eag1 immunoreactivity was widespread, although selective, throughout rat brain, especially noticeable in the perinuclear space of cells and proximal regions of the extensions, both in rat and human brain. To relate the results to the relative abundance of Eag1 transcripts in different regions of rat brain a reverse-transcription coupled to quantitative polymerase chain reaction (real time PCR) was performed. This real time PCR analysis showed high Eag1 expression in the olfactory bulb, cerebral cortex, hippocampus, hypothalamus, and cerebellum. The results indicate that Eag1 protein expression greatly overlaps with mRNA distribution in rats and humans. The physiological relevance of potassium channels in the different regions expressing Eag1 protein is discussed. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies involving estrogen treatment of ovariectomized rats or mice have attributed to this hormone a neuroprotective effect on the substantia nigra pars compacta (SNpc) neurons. We investigated the effect of estradiol replacement in ovariectomized rats on the survival of dopaminergic mesencephalic cell and the integrity of their projections to the striatum after microinjections of 1 mu g of 6-hydroxydopamine (6-OHDA) into the right SNpc or medial forebrain bundle (MFB). Estradiol replacement did not prevent the reduction either in the striatal concentrations of DA and metabolites or in the number of nigrostriatal dopaminergic neurons following lesion with 1 mu g of 6-OHDA into the SNpc. Nevertheless, estradiol treatment reduced the decrease in striatal DA following injection of 1 mu g of 6-OHDA into the MFB. Results suggest therefore that estrogen protect nigrostriatal dopaminergic neurons against a 6-OHDA injury to the MFB but not the SNpc. This may be due to the distinct degree of lesions promoted in these different rat models of Parkinson`s disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various deficits in the cognitive functioning of people with autism have been documented in recent years but these provide only partial explanations for the condition. We focus instead on an imitative disturbance involving difficulties both in copying actions and in inhibiting more stereotyped mimicking, such as echolalia. A candidate for the neural basis of this disturbance may be found in a recently discovered class of neurons in frontal cortex, 'mirror neurons' (MNs). These neurons show activity in relation both to specific actions performed by self and matching actions performed by others, providing a potential bridge between minds. MN systems exist in primates without imitative and 'theory of mind' abilities and we suggest that in order for them to have become utilized to perform social cognitive functions, sophisticated cortical neuronal systems have evolved in which MNs function as key elements. Early developmental failures of MN systems are likely to result in a consequent cascade of developmental impairments characterised by the clinical syndrome of autism. Crown Copyright (C) 2001 Published by Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We wished to identify the different types of retinal neurons on the basis of their content of neuroactive substances in both larval tiger salamander and mudpuppy retinas, favored species for electrophysiological investigation. Sections and wholemounts of retinas were labeled by immunocytochemical methods to demonstrate three calcium binding protein species and the common neurotransmitters, glycine, GABA and acetylcholine. Double immunostained sections and single labeled wholemount retinas were examined by confocal microscopy. Immunostaining patterns appeared to be the same in salamander and mudpuppy. Double and single cones, horizontal cells, some amacrine cells and ganglion cells were strongly calbindin-immunoreactive (IR). Calbindin-IR horizontal cells colocalized GABA. Many bipolar cells, horizontal cells, some amacrine cells and ganglion cells were strongly calretinin-IR. One type of horizontal cell and an infrequently occurring amacrine cell were parvalbumin-IR. Acetylcholine as visualized by ChAT-immunoreactivity was seen in a mirror-symmetric pair of amacrine cells that colocalized GABA and glycine. Glycine and GABA colocalized with calretinin, calbindin and occasionally with parvalbumin in amacrine cells. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunocytochemical techniques were used to examine the distribution of neurons immunoreactive (-ir) for nitric oxide synthase (nNOS), somatostatin (SOM), neuropeptide Y (NPY), parvalbumin (PV), calbindin (CB) and calretinin (CH), in the inferotemporal gyros (Brodmann's area 21) of the human neocortex. Neurons that colocalized either nNOS or SOM with PV, CB or CR were also identified by double-labeling techniques. Furthermore, glutamate receptor subunit profiles (GluR1, GluR2/3, GluR2/4, GluR5/6/7 and NMDAR1) were also determined for these cells. The number and distribution of cells containing nNOS, SOM, NPY, PV, CB or CR differed for each antigen. In addition, distinct subpopulations of neurons displayed different degrees of colocalization of these antigens depending on which antigens were compared. Moreover, cells that contained nNOS, SOM, NPY, PV, GB or CR expressed different receptor subunit profiles. These results show that specific subpopulations of neurochemically identified nonpyramidal cells may be activated via different receptor subtypes. As these different subpopulations of cells project to specific regions of pyramidal calls, facilitation of subsets of these cells via different receptor subunits may activate different inhibitory circuits. Thus, various distinct, but overlapping, inhibitory circuits may act in concert in the modulation of normal cortical function, plasticity and disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Slit is expressed in the midline of the central nervous system both in vertebrates and invertebrates. In Drosophila, it is the midline repellent acting as a ligand for the Roundabout (Robo) protein, the repulsive receptor which is expressed on the growth cones of the commissural neurons. We have isolated cDNA fragments of the zebrafish slit2 and slit3 homologues and found that both genes start to be expressed by the midgastrula stage well before the axonogenesis begins in the nervous system, both in the axial mesoderm, and slit2 in the anterior margin of the neural plate and slit3 in the polster at the anterior end of the prechordal mesoderm. Later, expression of slit2 mRNA is detected mainly in midline structures such as the floor plate cells and the hypochord, and in the anterior margins of the neural plates in the zebrafish embryo, while slit3 expression is observed in the anterior margin of the prechordal plate, the floorplate cells in the hindbrain, and the motor neurons both in the hindbrain and the spinal cord. To study the role of Slit in early embryos, we overexpressed Slit2 in the whole embryos either by injection of its mRNA into one-cell stage embryos or by heat-shock treatment of the transgenic embryos which carries the slit2 gene under control of the heat-shock promoter. Overexpression of Slit2 in such ways impaired the convergent extension movement of the mesoderm and the rostral migration of the cells in the dorsal diencephalon and resulted in cyclopia. Our results shed light on a novel aspect of Slit function as a regulatory factor of mesodermal cell movement during gastrulation. (C) 2001 Academic Press.