942 resultados para Cluster size


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In Alzheimer's disease (AD), neurofibrillary tangles (NFT) occur within neurons in both the upper and lower cortical laminae. Using a statistical method that estimates the size and spacing of NFT clusters along the cortex parallel to the pia mater, two hypotheses were tested: 1) that the cluster size and distribution of the NFT in gyri of the temporal lobe reflect degeneration of the feedforward (FF) and feedback (FB) cortico-cortical pathways, and 2) that there is a spatial relationship between the clusters of NFT in the upper and lower laminae. In 16 temporal lobe gyri from 10 cases of sporadic AD, NFT were present in both the upper and lower laminae in 11/16 (69%) gyri and in either the upper or lower laminae in 5/16 (31%) gyri. Clustering of the NFT was observed in all gyri. A significant peak-to-peak distance was observed in the upper laminae in 13/15 (87%) gyri and in the lower laminae in 8/ 12 (67%) gyri, suggesting a regularly repeating pattern of NFT clusters along the cortex. The regularly distributed clusters of NFT were between 500 and 800 μm in size, the estimated size of the cells of origin of the FF and FB cortico-cortical projections, in the upper laminae of 6/13 (46%) gyri and in the lower laminae of 2/8 (25%) gyri. Clusters of NFT in the upper laminae were spatially correlated (in phase) with those in the lower laminae in 5/16 (31%) gyri. The clustering patterns of the NFT are consistent with their formation in relation to the FF and FB cortico-cortical pathways. In most gyri, NFT clusters appeared to develop independently in the upper and lower laminae.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abnormal neuronal intermediate filament (IF) inclusions immunopositive for the type IV IF α-internexin have been identified as the pathological hallmark of neuronal intermediate filament inclusion disease (NIFID). We studied the topography of these inclusions in the frontal and temporal lobe in 68 areas from 10 cases of NIFID. In the cerebral cortex, CA sectors of the hippocampus, and dentate gyrus granule cell layer, the inclusions were distributed mainly in regularly distributed clusters, 50-800 μm in diameter. In seven cortical areas, there was a more complex pattern in which the clusters of inclusions were aggregated into larger superclusters. In 11 cortical areas, the size of the clusters approximated to those of the cells of origin of the cortico-cortical pathways but in the majority of the remaining areas, cluster size was smaller than 400 μm. The topography of the lesions suggests that there is degeneration of the cortico-cortical projections in NIFID with the formation of α-internexin-positive aggregates within vertical columns of cells. Initially, only a subset of cells within a vertical column develops inclusions but as the disease progresses, the whole of the column becomes affected. The corticostriate projection appears to have little effect on the cortical topography of the inclusions. © 2006 EFNS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dementia with neurofilament inclusions (DNI) is a new disorder characterized clinically by early-onset dementia and histologically by the presence of intraneural inclusions immunopositive for neurofilament antigens but lacking tau and α-synuclein reactivity. We studied the clustering patterns of the neurofilament inclusions (NI) in regions of the temporal lobe in three cases of DNI to determine whether they have the same spatial patterns as inclusions in the tauopathies and α-synucleinopathies. The NI exhibited a clustered distribution (mean size of clusters 400 μm, range 50-800 μm, SD 687.8) in 24/28 of the areas studied. In 22 of these areas, the clusters exhibited a regular distribution along the tissue parallel to the pia mater or alveus. In 3 cortical areas, there was evidence of a more complex pattern in which the NI clusters were aggregated into larger superclusters. In 6 cortical areas, the size of the clusters approximated to those of the cells of origin of the cortico-cortical pathways but in the remaining areas cluster size was smaller than 400 μm. Despite the unique molecular profile of the NI, their spatial patterns are similar to those shown by filamentous neuronal inclusions in the tauopathies and α-synucleinopathies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The spatial patterns of the prion protein (PrP) deposits were studied in immunostained sections of areas of the cerebral cortex, hippocampus, dentate gyrus, and the molecular layer of the cerebellum in 11 cases of variant Creutzfeldt-Jakob disease (vCJD). Clustering of PrP deposits, with a regular distribution of the clusters parallel to the tissue boundary, was the most common spatial pattern observed. Two morphological types of PrP deposit were recognised, those consisting of a condensed core (florid deposits) and those deposits lacking a condensed core (non-florid deposits). The florid and non-florid PrP deposits exhibited a different profile of spatial patterns. First, the florid deposits exhibited a regularly distributed pattern of clusters more frequently than the non-florid deposits. Second, the florid deposits formed larger clusters (greater than1,600 µm in diameter) less frequently than the non-florid deposits. In the areas of the cerebral cortex that exhibited a regular distribution of PrP deposit clusters, the cluster size of the deposits approximated that of the groups of cells of the cortico-cortical pathway origin in only 12% of analyses. No significant differences in the frequency of the different types of spatial pattern were observed in different brain regions, or in the cerebral cortex between the upper and lower laminae. It was concluded that the spatial patterns of the PrP deposits in the cerebral cortex in vCJD are unlikely to reflect the degeneration of the cortico-cortical pathways as has been reported in sporadic CJD (sCJD). In addition, different factors could be involved in the development of the deposits with and without a condensed core.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Correlations between the clustering patterns of the vacuolation ('spongiform change'), prion protein (PrP) deposits, and surviving neurons were studied in the cerebral cortex, hippocampus, and cerebellum in 11 cases of sporadic Creutzfeldt-Jakob disease (sCJD). Differences in the sizes of the clusters of vacuoles were observed between brain regions and in the cerebral cortex, between the upper and lower laminae. With the exception of the parietal cortex, mean cluster size of the vacuoles was similar to that of the PrP deposits in each brain area. Clusters of the vacuoles were spatially correlated with the density of surviving neurons and with the clusters of PrP deposits in 47% and 53% of cortical areas analysed respectively but there were few spatial correlation between the PrP deposits and the density of surviving neurons. The data suggest that the pathology of sCJD may spread through the brain via specific anatomical pathways. Development of the clusters of vacuoles is spatially related to surviving neurons while the appearance of clusters of PrP deposits is related to the development of the vacuolation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The spatial pattern of the prion protein (PrP) deposits was studied in the cerebral cortex and cerebellum in 10 patients with sporadic Creutzfeldt–Jakob disease (CJD). In all patients the PrP deposits were aggregated into clusters and, in 90% of cortical areas and in 50% of cerebellar sections, the clusters exhibited a regular periodicity parallel to the tissue boundary; a spatial pattern also exhibited by ß-amyloid (Aß) deposits in Alzheimer's disease (AD). In the cerebral cortex, the incidence of regular clustering of the PrP deposits was similar in the upper and lower cortical laminae. The sizes of the PrP clusters in the upper and lower cortex were uncorrelated. No significant differences in mean cluster size of the PrP deposits were observed between brain regions. The size, location and distribution of the PrP deposit clusters suggest that PrP deposition occurs in relation to specific anatomical pathways and supports the hypothesis that prion pathology spreads through the brain via such pathways. In addition, the data suggest that there are similarities in the pathogenesis of extracellular protein deposits in prion disease and in AD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The spatial patterns of the diffuse, primitive, and classic β-amyloid (Aβ) deposits were compared in cortical regions in early-onset familial Alzheimer's disease (EO-FAD) linked to mutations of the amyloid precursor protein APP) or presenilin 1 (PSEN1) genes, late-onset familial AD (LO-FAD), and sporadic AD (SAD). The objective was to determine whether genetic factors influenced the spatial patterns of the Aβ deposits. Aβ deposits were distributed either in clusters which were regularly distributed parallel to the pia mater or in larger, non-regularly distributed clusters. There were no significant differences in spatial pattern of the diffuse deposits between patient groups but mean cluster size of the diffuse deposits was larger in FAD compared with SAD. Primitive Aβ deposits were more frequently distributed in regular clusters and less frequently distributed in large clusters in FAD compared with SAD. Classic Aβ deposits were more frequently distributed in regularly spaced clusters and less frequently distributed in large clusters in LO-FAD compared with EO-FAD. There were no significant differences in the spatial patterns or cluster sizes of Aβ deposits in cases classified according to apolipoprotein E (APOE) genotype. These results suggest (1) greater deposition of Aβ in the form of clusters of diffuse deposits in FAD, (2) a greater proportion of diffuse deposits may be converted to primitive deposits in SAD, (3) classic deposits are more widely distributed in EO-FAD, and (4) the presence of APOE allele ε4 has little effect on the spatial patterns of Aβ deposits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Clustering of Pick bodies (PB) was studied in the frontal and temporal lobe in 10 cases of Pick's disease (PD). Pick bodies exhibited clustering in 47/50 (94%) brain areas analysed. In 20/50 (40%) brain areas, PB were present in a single large cluster ≤ 6400 μm in diameter, in 27/50 (54%) PB occurred in smaller clusters (200-3200 μm in diameter) which exhibited a regular periodicity relative to the tissue boundary, in 1/50 (2%) there was a regular distribution of individual PB and in 2/50 (4%), PB were randomly distributed. Mean cluster size of the PB was greater in the dentate gyrus compared with the inferior temporal gyrus and lateral occipitotemporal gyrus. Mean cluster size of PB in a brain region was positively correlated with the mean density of PB. Hence, PB exhibit essentially the same spatial patterns as senile plaques and neurofibrillary tangles in Alzheimer's disease (AD) and Lewy bodies in Dementia with Lewy bodies (DLB).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The spatial patterns of Lewy bodies (LB), senile plaques (SP), and neurofibrillary tangles (NFT) were studied in ubiquitin-stained sections of the temporal lobe in cases of dementia with Lewy bodies (DLB), which varied in the degree of associated Alzheimer's disease (AD) pathology. In all patients, LB, SP, and NFT developed in clusters and in a significant proportion of brain areas, the clusters exhibited a regular periodicity parallel to the tissue boundary. In the lateral occipitotemporal gyrus (LOT) and parahippocampal gyrus (PHG), the clusters of LB were larger than those of the SP and NFT but in the hippocampus, clusters of the three lesions were of similar size. Mean cluster size of the LB, SP, and NFT was similar in cases of DLB with and without significant associated AD pathology. LB density was positively correlated with SP and NFT density in 42 and 17% of brain areas analyzed, respectively, while SP and NFT densities were positively correlated in 7% of brain areas. The data suggest that LB in DLB exhibit similar spatial patterns to SP and NFT in AD and that SP and NFT exhibit similar spatial patterns in DLB and AD. In addition, in some instances, clusters of LB appeared to be more closely related spatially to the clusters of SP than to NFT.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Clustering of Lewy bodies (LB) was studied in four regions of the medial temporal lobe in 12 cases of dementia with LB (DLB). LB exhibited clustering in 67/70 (96%) brain areas analysed. In 34/70 (49%) analyses, LB were present in a single large cluster ≤6400 μm in diameter, in 33/70 (47%) LB occurred in smaller clusters 200-3200 μm in diameter which exhibited a regular periodicity relative to the tissue boundary and in 3/70 (4%), LB were randomly distributed. A regular pattern of LB clusters was observed equally frequently in the cortex and hippocampus, in upper and lower cortical laminae and in 'pure' cases of DLB with negligible Alzheimer's disease (AD) pathology compared with cases of AD with DLB. In cortical regions, there was no significant correlation between LB cluster size in the upper and lower cortical laminae. The regular periodicity of LB clusters suggests that LB develop in relation to the cells of origin of specific cortico-cortical and cortico-hippocampal projections.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The spatial patterns of discrete beta-amyloid (Abeta) deposits in brain tissue from patients with Alzheimer disease (AD) were studied using a statistical method based on linear regression, the results being compared with the more conventional variance/mean (V/M) method. Both methods suggested that Abeta deposits occurred in clusters (400 to <12,800 mu m in diameter) in all but 1 of the 42 tissues examined. In many tissues, a regular periodicity of the Abeta deposit clusters parallel to the tissue boundary was observed. In 23 of 42 (55%) tissues, the two methods revealed essentially the same spatial patterns of Abeta deposits; in 15 of 42 (36%), the regression method indicated the presence of clusters at a scale not revealed by the V/M method; and in 4 of 42 (9%), there was no agreement between the two methods. Perceived advantages of the regression method are that there is a greater probability of detecting clustering at multiple scales, the dimension of larger Abeta clusters can be estimated more accurately, and the spacing between the clusters may be estimated. However, both methods may be useful, with the regression method providing greater resolution and the V/M method providing greater simplicity and ease of interpretation. Estimates of the distance between regularly spaced Abeta clusters were in the range 2,200-11,800 mu m, depending on tissue and cluster size. The regular periodicity of Abeta deposit clusters in many tissues would be consistent with their development in relation to clusters of neurons that give rise to specific neuronal projections.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The density of diffuse, primitive, classic and compact β-amyloid (β/A4) deposits was estimated in the medial temporal lobe in elderly non-demented brains and in Alzheimer's disease (AD). In the non-demented cases, β/A4 deposits were absent in the hippocampus but in 8/14 cases they were present in the adjacent cortical regions. Variation in β/A4 deposition in the non-demented cases was large and overlapped with that of the AD cases. The ratio of mature to diffuse β/A4 deposits was greater in the non-demented than in the AD cases. In both the non-demented cases and AD, the β/A4 deposits were clustered with, in many tissues, a regular distribution of clusters along the cortex parallel to the pia. However, the mean cluster size of the deposits in the cortex was greater in AD than in the non-demented cases. These results suggest that the spread of β/A4 pathology between the modular units of the cortex and into the hippocampus could be important factors in the development of AD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The spatial pattern of cellular neurofibrillary tangles (NFT) was studied in the supra- and infragranular layers of various cortical regions in cases of Alzheimer's disease (AD). The objective was to test the hypothesis that NFT formation was associated with the cells of origin of specific cortico-cortical projections. The novel feature of the study was that pattern analysis enabled the dimension and spacing of NFT clusters along the cortical ribbon to be estimated. In the majority of brain regions studied, NFT occurred in clusters of neurons which were regularly spaced along the cortical strip. This pattern is consistent with the predicted distribution of the cells of origin of specific cortico-cortico projections. Mean NFT cluster size varied from 250 to > 12800 microns in different cortical tissues suggesting either variation in the size of the cell clusters or a dynamic process in the development of NFT in relation to these cell clusters. The formation of NFT in cell clusters which may give rise to the feed-forward and feed-back cortico-cortical projections suggests a possible route of spread of NFT pathology in AD between cortical regions and from the cortex to subcortical areas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The density and spatial pattern of immunostained beta/A4 deposits and mature senile plaques (SP) stained by the Glees method were compared in Alzheimer's diseased brain. Thirty-seven percent of the variance in Glees SP density in a tissue could be explained by beta/A4. Both lesions were clustered with the beta/A4 clusters often larger than the Glees SP clusters. Beta/A4 and Glees SP cluster size were not correlated in a tissue. The size of Glees SP clusters was positively correlated with SP density but no correlation could be detected for beta/A4. Hence, the density and spatial pattern of beta/A4 deposits in most tissues did not predict the development of Glees SP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The spatial distribution patterns of the diffuse, primitive, and classic beta-amyloid (Abeta) deposits were studied in areas of the medial temporal lobe in 12 cases of Down's Syndrome (DS) 35 to 67 years of age. Large clusters of diffuse deposits were present in the youngest patients; cluster size then declined with patient age but increased again in the oldest patients. By contrast, the cluster sizes of the primitive and classic deposits increased with age to a maximum in patients 45 to 55 and 60 years of age respectively and declined in size in the oldest patients. In the parahippocampal gyrus (PHG), the clusters of the primitive deposits were most highly clustered in cases of intermediate age. The data suggest a developmental sequence in DS in which Abeta is deposited initially in the form of large clusters of diffuse deposits that are then gradually replaced by clusters of primitive and classic deposits. The oldest patients were an exception to this sequence in that the pattern of clustering resembled that of the youngest patients.