936 resultados para Cluster Ensemble Learning
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Abstract: Active or participatory learning by the student within a classroom environment has been fairly recently recognized as an effective, efficient, and superior instructional technique yet few teachers in higher education have adopted this pedagogical strategy. This is especially true in Science where teachers primarily lecture to passively seated students while using static visual aids or multimedia projections. Teachers generally teach as they were taught and lecture formats have been the norm. Although student-learning theories as well as student learning styles, abilities, and understanding strategies have changed, traditional teaching techniques have not evolved past the “chalk and talk” instructional strategy. This research looked into student’s perceptions of cooperative learning or team-based active learning in order to gain insight and some understanding as to how students felt about this learning technique. Student’s attitudes were then compared to student grades to detennine whether cooperative learning impeded or ameliorated academic performance. The results revealed significant differences measured in all the survey questions pertaining to perception or attitudes. As a result of the cooperative learning activities, respondents indicated more agreement to the survey questions pertaining to the benefits of cooperative learning. The experimental group exposed to cooperative learning thus experienced more positive attitudes and perceptions than the groups exposed only to a lecture-based teaching and learning format. Each of the hypotheses tested demonstrated that students had more positive attitudes towards cooperative learning strategies. Recommendations as to future work were presented in order to gain a greater understanding into both student and teacher attitudes towards the cooperative learning model.||Résumé: Lapprentissage actif ou préparatoire par létudiant au sein d’une classe a été reconnu assez récemment comme une technique d’enseignement plus efficace. Cependant, peu d’enseignants ont adopté cette stratégie pedagogique pour l'éducation post-secondaire. Ceci est particulièrement le cas dans le domaine des sciences où les enseignants font surtout usage de cours magistraux avec des étudiants passifs tout en utilisant des aides visuelles statiques ou des projections multimédias. Les professeurs enseignent generalement comme on leur a eux-même enseigné et les cours magistraux ont été la norme par le passé. Les techniques traditionnelles d'enseignernent n'ont pas évolué au-delà de la craie et du tableau noir et ce même si les théories sur l’apprentissage par les étudiants ont changé, tout comme les styles, les habiletés et les stratégies de compréhension d’apprentissage des étudiants. Cette recherche se penche sur les perceptions des étudiants au sujet de l'apprentissage coopératif ou de l'apprentissage actif par équipe de telle sorte qu'on puisse avoir un aperçu et une certaine compréhension de comment les étudiants se sentent par rapport à ces techniques d'apprentissage. Les attitudes des étudiants ont par la suite été comparées aux notes de ceux-ci pour déterminer si l'apprentissage coopératif avait nui ou au contraire amélioré leurs performances académiques. Les résultats obtenus dans l'étude d'ensemble révèlent des différences significatives dans toutes les questions ayant trait à la perception et aux attitudes.
Resumo:
Analysis of data without labels is commonly subject to scrutiny by unsupervised machine learning techniques. Such techniques provide more meaningful representations, useful for better understanding of a problem at hand, than by looking only at the data itself. Although abundant expert knowledge exists in many areas where unlabelled data is examined, such knowledge is rarely incorporated into automatic analysis. Incorporation of expert knowledge is frequently a matter of combining multiple data sources from disparate hypothetical spaces. In cases where such spaces belong to different data types, this task becomes even more challenging. In this paper we present a novel immune-inspired method that enables the fusion of such disparate types of data for a specific set of problems. We show that our method provides a better visual understanding of one hypothetical space with the help of data from another hypothetical space. We believe that our model has implications for the field of exploratory data analysis and knowledge discovery.
Resumo:
Discovery of microRNAs (miRNAs) relies on predictive models for characteristic features from miRNA precursors (pre-miRNAs). The short length of miRNA genes and the lack of pronounced sequence features complicate this task. To accommodate the peculiarities of plant and animal miRNAs systems, tools for both systems have evolved differently. However, these tools are biased towards the species for which they were primarily developed and, consequently, their predictive performance on data sets from other species of the same kingdom might be lower. While these biases are intrinsic to the species, their characterization can lead to computational approaches capable of diminishing their negative effect on the accuracy of pre-miRNAs predictive models. We investigate in this study how 45 predictive models induced for data sets from 45 species, distributed in eight subphyla/classes, perform when applied to a species different from the species used in its induction. Results: Our computational experiments show that the separability of pre-miRNAs and pseudo pre-miRNAs instances is species-dependent and no feature set performs well for all species, even within the same subphylum/class. Mitigating this species dependency, we show that an ensemble of classifiers reduced the classification errors for all 45 species. As the ensemble members were obtained using meaningful, and yet computationally viable feature sets, the ensembles also have a lower computational cost than individual classifiers that rely on energy stability parameters, which are of prohibitive computational cost in large scale applications. Conclusion: In this study, the combination of multiple pre-miRNAs feature sets and multiple learning biases enhanced the predictive accuracy of pre-miRNAs classifiers of 45 species. This is certainly a promising approach to be incorporated in miRNA discovery tools towards more accurate and less species-dependent tools.
Resumo:
El presente estudio analiza las percepciones y actitudes que tienen los adultos mayores de la ciudad de Cuenca, Ecuador hacia el aprendizaje del inglés. Un total de 151 adultos mayores (con edad promedio de 70.3 años) respondió a un cuestionario con 50 ítems. Se llevó a cabo análisis factoriales, de regresión múltiple y cluster con el propósito de definir las dimensiones subyacentes en las percepciones, motivaciones y ambiciones de los adultos mayores para aprender un idioma extranjero, y su relación con las características sociodemográficas de los participantes. Los resultados señalan que el interés por estudiar un idioma extranjero está basado en la percepción de que aquello mejora la interacción social de las personas, su desarrollo personal, el funcionamiento y mantenimiento de la mente y memoria, y que activa y vuelve su vida más dinámica. Los resultados además revelaron que la principal motivación de los participantes para tomar un curso de inglés está relacionada con el potencial de usar este idioma en la vida diaria y el de leer profusamente en esa lengua extranjera. La duración del curso y la obtención de un certificado fueron factores determinantes que permitieron agrupar a los participantes en función de sus preferencias en lo que respecta al diseño práctico de un curso de inglés. Adicionalmente, la edad y el nivel de instrucción fueron variables determinantes de motivación que influyeron en la mayor parte de las respuestas dadas por los participantes.
Resumo:
Ensemble Stream Modeling and Data-cleaning are sensor information processing systems have different training and testing methods by which their goals are cross-validated. This research examines a mechanism, which seeks to extract novel patterns by generating ensembles from data. The main goal of label-less stream processing is to process the sensed events to eliminate the noises that are uncorrelated, and choose the most likely model without over fitting thus obtaining higher model confidence. Higher quality streams can be realized by combining many short streams into an ensemble which has the desired quality. The framework for the investigation is an existing data mining tool. First, to accommodate feature extraction such as a bush or natural forest-fire event we make an assumption of the burnt area (BA*), sensed ground truth as our target variable obtained from logs. Even though this is an obvious model choice the results are disappointing. The reasons for this are two: One, the histogram of fire activity is highly skewed. Two, the measured sensor parameters are highly correlated. Since using non descriptive features does not yield good results, we resort to temporal features. By doing so we carefully eliminate the averaging effects; the resulting histogram is more satisfactory and conceptual knowledge is learned from sensor streams. Second is the process of feature induction by cross-validating attributes with single or multi-target variables to minimize training error. We use F-measure score, which combines precision and accuracy to determine the false alarm rate of fire events. The multi-target data-cleaning trees use information purity of the target leaf-nodes to learn higher order features. A sensitive variance measure such as f-test is performed during each node’s split to select the best attribute. Ensemble stream model approach proved to improve when using complicated features with a simpler tree classifier. The ensemble framework for data-cleaning and the enhancements to quantify quality of fitness (30% spatial, 10% temporal, and 90% mobility reduction) of sensor led to the formation of streams for sensor-enabled applications. Which further motivates the novelty of stream quality labeling and its importance in solving vast amounts of real-time mobile streams generated today.