959 resultados para Clupea harengus abundance as Nautical Area Scattering Coefficient


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simultaneous and collocated measurements of total and hemispherical backscattering coefficients (σ and β, respectively) at three wavelengths, mass size distributions, and columnar spectral aerosol optical depth (AOD) were made onboard an extensive cruise experiment covering, for the first time, the entire Bay of Bengal (BoB) and northern Indian Ocean. The results are synthesized to understand the optical properties of aerosols in the marine atmospheric boundary layer and their dependence on the size distribution. The observations revealed distinct spatial and spectral variations of all the aerosol parameters over the BoB and the presence of strong latitudinal gradients. The size distributions varied spatially, with the majority of accumulation modes decreasing from north to south. The scattering coefficient decreased from very high values (resembling those reported for continental/urban locations) in the northern BoB to very low values seen over near-pristine environments in the southeastern BoB. The average mass scattering efficiency of BoB aerosols was found to be 2.66 ± 0.1 m2 g−1 at 550 nm. The spectral dependence of columnar AOD deviated significantly from that of the scattering coefficients in the northern BoB, implying vertical heterogeneity in the aerosol type in that region. However, a more homogeneous scenario was observed in the southern BoB. Simultaneous lidar and in situ measurements onboard an aircraft over the ocean revealed the presence of elevated aerosol layers of enhanced extinction at altitudes of 1 to 3 km with an offshore extent of a few hundred kilometers. Back-trajectory analyses showed these layers to be associated with advection from west Asia and western India. The large spatial variations and vertical heterogeneity in aerosol properties, revealed by the present study, need to be included in the regional radiative forcing over the Bay of Bengal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Predation is an important source of mortality for most aquatic animals. Thus, the ability to avoid being eaten brings substantial fitness benefits to individuals. Predator detection abilities and antipredator behaviour were examined in various planktivores, i.e. the littoral mysids Neomysis integer and Praunus flexuosus, three-spined stickleback Gasterosteus aculeatus larvae, pelagic mysids Mysis mixta and M. relicta, and the predatory cladoceran Cercopagis pengoi, with cues from their respective predators European perch Perca fluviatilis and Baltic herring Clupea harengus membras. The use of different aquatic macrophytes as predation refuges by the littoral planktivores was also examined. All pelagic planktivores and stickleback larvae were able to detect the presence of their predator by chemical cues alone. The littoral mysids N. integer and P. flexuosus responded only when chemical and visual predator cues were combined. The responses of stickleback larvae were stronger to the combined cues than the chemical cue alone. A common antipredator behaviour in all of the planktivores studied was decreased ingestion rate in response to predator cues. N. integer and stickleback larvae also decreased their swimming activity. Pelagic mysids and C. pengoi altered their prey selectivity patterns in response to predator cues. The effects of predator cues on the swarming behaviour of N. integer were examined. Swarming brings clear antipredator advantages to N. integer, since when they feed in a swarm, they do not significantly decrease their feeding rate. However, the swarming behaviour of N. integer was not affected by predation risk, but was instead a fixed strategy. Despite the presence or absence of predator cues, N. integer individuals attempted to associate with a swarm and preferred larger to smaller swarms. In studies with aquatic macrophytes, stickleback larvae and P. flexuosus utilized vegetation as a predation refuge, spending more time within vegetation when under predation threat. The two macroalgal species studied, bladderwrack Fucus vesiculosus and stonewort Chara tomentosa, were preferred by P. flexuosus, whereas Eurasian watermilfoil Myriophyllum spicatum was strongly avoided by N. integer and stickleback larvae. In fact, when in dense patches in aquaria, M. spicatum caused acute and high mortality (> 70%) in littoral mysids, but not in sticklebacks, whereas C. tomentosa and northern watermilfoil M. sibiricum did not. In contrast, only 2-4% mortality in N. integer was observed with intact and broken stems of M. spicatum in field experiments. The distribution of littoral mysids in different vegetations, however, suggests that N. integer avoids areas vegetated by M. spicatum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluated trained listener-based acoustic sampling as a reliable and non-invasive method for rapid assessment of ensiferan species diversity in tropical evergreen forests. This was done by evaluating the reliability of identification of species and numbers of calling individuals using psychoacoustic experiments in the laboratory and by comparing psychoacoustic sampling in the field with ambient noise recordings made at the same time. The reliability of correct species identification by the trained listener was 100% for 16 out of 20 species tested in the laboratory. The reliability of identifying the numbers of individuals correctly was 100% for 13 out of 20 species. The human listener performed slightly better than the instrument in detecting low frequency and broadband calls in the field, whereas the recorder detected high frequency calls with greater probability. To address the problem of pseudoreplication during spot sampling in the field, we monitored the movement of calling individuals using focal animal sampling. The average distance moved by calling individuals for 17 out of 20 species was less than 1.5 m in half an hour. We suggest that trained listener-based sampling is preferable for crickets and low frequency katydids, whereas broadband recorders are preferable for katydid species with high frequency calls for accurate estimation of ensiferan species richness and relative abundance in an area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reconstructions in optical tomography involve obtaining the images of absorption and reduced scattering coefficients. The integrated intensity data has greater sensitivity to absorption coefficient variations than scattering coefficient. However, the sensitivity of intensity data to scattering coefficient is not zero. We considered an object with two inhomogeneities (one in absorption and the other in scattering coefficient). The standard iterative reconstruction techniques produced results, which were plagued by cross talk, i.e., the absorption coefficient reconstruction has a false positive corresponding to the location of scattering inhomogeneity, and vice-versa. We present a method to remove cross talk in the reconstruction, by generating a weight matrix and weighting the update vector during the iteration. The weight matrix is created by the following method: we first perform a simple backprojection of the difference between the experimental and corresponding homogeneous intensity data. The built up image has greater weightage towards absorption inhomogeneity than the scattering inhomogeneity and its appropriate inverse is weighted towards the scattering inhomogeneity. These two weight matrices are used as multiplication factors in the update vectors, normalized backprojected image of difference intensity for absorption inhomogeneity and the inverse of the above for the scattering inhomogeneity, during the image reconstruction procedure. We demonstrate through numerical simulations, that cross-talk is fully eliminated through this modified reconstruction procedure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scattering of coherent light from scattering particles causes phase shift to the scattered light. The interference of unscattered and scattered light causes the formation of speckles. When the scattering particles, under the influence of an ultrasound (US) pressure wave, vibrate, the phase shift fluctuates, thereby causing fluctuation in speckle intensity. We use the laser speckle contrast analysis (LSCA) to reconstruct a map of the elastic property (Young's modulus) of soft tissue-mimicking phantom. The displacement of the scatters is inversely related to the Young's modulus of the medium. The elastic properties of soft biological tissues vary, many fold with malignancy. The experimental results show that laser speckle contrast (LSC) is very sensitive to the pathological changes in a soft tissue medium. The experiments are carried out on a phantom with two cylindrical inclusions of sizes 6 mm in diameter, separated by 8 mm between them. Three samples are made. One inclusion has Young's modulus E of 40 kPa. The second inclusion has either a Young's modulus E of 20 kPa, or scattering coefficient of mu'(s), = 3.00 mm(-1) or absorption coefficient of mu(a) = 0.03 mm(-1). The optical absorption (mu(a)), reduced scattering (mu'(s)) coefficient, and the Young's modulus of the background are mu(a) = 0.01 mm(-1), mu'(s) = 1.00 mm(-1) and 12kPa, respectively. The experiments are carried out on all three phantoms. On a phantom with two inclusions of Young's modulus of 20 and 40 kPa, the measured relative speckle image contrasts are 36.55% and 63.72%, respectively. Experiments are repeated on phantoms with inclusions of mu(a) = 0.03 mm-1, E = 40 kPa and mu'(s) = 3.00 mm(-1). The results show that it is possible to detect inclusions with contrasts in optical absorption, optical scattering, and Young's modulus. Studies of the variation of laser speckle contrast with ultrasound driving force for various values of mu(a), mu'(s), and Young's modulus of the tissue mimicking medium are also carried out. (C) 2011 American Institute of Physics. doi:10.1063/1.3592352]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diffuse optical tomography (DOT) using near-infrared (NIR) light is a promising tool for noninvasive imaging of deep tissue. This technique is capable of quantitative reconstructions of absorption coefficient inhomogeneities of tissue. The motivation for reconstructing the optical property variation is that it, and, in particular, the absorption coefficient variation, can be used to diagnose different metabolic and disease states of tissue. In DOT, like any other medical imaging modality, the aim is to produce a reconstruction with good spatial resolution and accuracy from noisy measurements. We study the performance of a phase array system for detection of optical inhomogeneities in tissue. The light transport through a tissue is diffusive in nature and can be modeled using diffusion equation if the optical parameters of the inhomogeneity are close to the optical properties of the background. The amplitude cancellation method that uses dual out-of-phase sources (phase array) can detect and locate small objects in turbid medium. The inverse problem is solved using model based iterative image reconstruction. Diffusion equation is solved using finite element method for providing the forward model for photon transport. The solution of the forward problem is used for computing the Jacobian and the simultaneous equation is solved using conjugate gradient search. The simulation studies have been carried out and the results show that a phase array system can resolve inhomogeneities with sizes of 5 mm when the absorption coefficient of the inhomogeneity is twice that of the background tissue. To validate this result, a prototype model for performing a dual-source system has been developed. Experiments are carried out by inserting an inhomogeneity of high optical absorption coefficient in an otherwise homogeneous phantom while keeping the scattering coefficient same. The high frequency (100 MHz) modulated dual out-of-phase laser source light is propagated through the phantom. The interference of these sources creates an amplitude null and a phase shift of 180° along a plane between the two sources with a homogeneous object. A solid resin phantom with inhomogeneities simulating the tumor is used in our experiment. The amplitude and phase changes are found to be disturbed by the presence of the inhomogeneity in the object. The experimental data (amplitude and the phase measured at the detector) are used for reconstruction. The results show that the method is able to detect multiple inhomogeneities with sizes of 4 mm. The localization error for a 5 mm inhomogeneity is found to be approximately 1 mm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The authors aim at developing a pseudo-time, sub-optimal stochastic filtering approach based on a derivative free variant of the ensemble Kalman filter (EnKF) for solving the inverse problem of diffuse optical tomography (DOT) while making use of a shape based reconstruction strategy that enables representing a cross section of an inhomogeneous tumor boundary by a general closed curve. Methods: The optical parameter fields to be recovered are approximated via an expansion based on the circular harmonics (CH) (Fourier basis functions) and the EnKF is used to recover the coefficients in the expansion with both simulated and experimentally obtained photon fluence data on phantoms with inhomogeneous inclusions. The process and measurement equations in the pseudo-dynamic EnKF (PD-EnKF) presently yield a parsimonious representation of the filter variables, which consist of only the Fourier coefficients and the constant scalar parameter value within the inclusion. Using fictitious, low-intensity Wiener noise processes in suitably constructed ``measurement'' equations, the filter variables are treated as pseudo-stochastic processes so that their recovery within a stochastic filtering framework is made possible. Results: In our numerical simulations, we have considered both elliptical inclusions (two inhomogeneities) and those with more complex shapes (such as an annular ring and a dumbbell) in 2-D objects which are cross-sections of a cylinder with background absorption and (reduced) scattering coefficient chosen as mu(b)(a)=0.01mm(-1) and mu('b)(s)=1.0mm(-1), respectively. We also assume mu(a) = 0.02 mm(-1) within the inhomogeneity (for the single inhomogeneity case) and mu(a) = 0.02 and 0.03 mm(-1) (for the two inhomogeneities case). The reconstruction results by the PD-EnKF are shown to be consistently superior to those through a deterministic and explicitly regularized Gauss-Newton algorithm. We have also estimated the unknown mu(a) from experimentally gathered fluence data and verified the reconstruction by matching the experimental data with the computed one. Conclusions: The PD-EnKF, which exhibits little sensitivity against variations in the fictitiously introduced noise processes, is also proven to be accurate and robust in recovering a spatial map of the absorption coefficient from DOT data. With the help of shape based representation of the inhomogeneities and an appropriate scaling of the CH expansion coefficients representing the boundary, we have been able to recover inhomogeneities representative of the shape of malignancies in medical diagnostic imaging. (C) 2012 American Association of Physicists in Medicine. [DOI: 10.1118/1.3679855]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diffuse optical tomography (DOT) using near-infrared light is a promising tool for non-invasive imaging of deep tissue. This technique is capable of quantitative reconstruction of absorption (mu(a)) and scattering coefficient (mu(s)) inhomogeneities in the tissue. The rationale for reconstructing the optical property map is that the absorption coefficient variation provides diagnostic information about metabolic and disease states of the tissue. The aim of DOT is to reconstruct the internal tissue cross section with good spatial resolution and contrast from noisy measurements non-invasively. We develop a region-of-interest scanning system based on DOT principles. Modulated light is injected into the phantom/tissue through one of the four light emitting diode sources. The light traversing through the tissue gets partially absorbed and scattered multiple times. The intensity and phase of the exiting light are measured using a set of photodetectors. The light transport through a tissue is diffusive in nature and is modeled using radiative transfer equation. However, a simplified model based on diffusion equation (DE) can be used if the system satisfies following conditions: (a) the optical parameter of the inhomogeneity is close to the optical property of the background, and (b) mu(s) of the medium is much greater than mu(a) (mu(s) >> mu(a)). The light transport through a highly scattering tissue satisfies both of these conditions. A discrete version of DE based on finite element method is used for solving the inverse problem. The depth of probing light inside the tissue depends on the wavelength of light, absorption, and scattering coefficients of the medium and the separation between the source and detector locations. Extensive simulation studies have been carried out and the results are validated using two sets of experimental measurements. The utility of the system can be further improved by using multiple wavelength light sources. In such a scheme, the spectroscopic variation of absorption coefficient in the tissue can be used to arrive at the oxygenation changes in the tissue. (C) 2016 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exciton-phonon coupling and nonradiative relaxation processes have been investigated in near-infrared (NIR) emitting ternary alloyed mercury cadmium telluride (CdHgTe) quantum dots. Organically capped CdHgTe nanocrystals of sizes varying from 2.5-4.2 nm have been synthesized where emission is in the NIR region of 650-855 nm. Temperature-dependent (15-300 K) photoluminescence (PL) and the decay dynamics of PL at 300 K have been studied to understand the photophysical properties. The PL decay kinetics shows the transition from triexponential to biexponential on increasing the size of the quantom dots (QDs), informing the change in the distribution of the emitting states. The energy gap is found to be following the Varshni relation with a temperature coefficient of 2.1-2.8 x 10(-4) eV K-1. The strength of the electron-phonon coupling, which is reflected in the Huang and Rhys factor S, is found in the range of 1.17-1.68 for QDs with a size of 2.5-4.2 nm. The integrated PL intensity is nearly constant until 50 K, and slowly decreases up to 140 K, beyond which it decreases at a faster rate. The mechanism for PL quenching with temperature is attributed to the presence of nonradiative relaxation channels, where the excited carriers are thermally stimulated to the surface defect/trap states. At temperatures of different region (<140 K and 140-300 K), traps of low (13-25 meV) and high (65-140 meV) activation energies seem to be controlling the quenching of the PL emission. The broadening of emission linewidth is found to due to exciton-acoustic phonon scattering and exciton-longitudinal optical (LO) phonon coupling. The exciton-acoustic phonon scattering coefficient is found to be enhanced up to 55 MU eV K-1 due to a stronger confinement effect. These findings give insight into understanding the photophysical properties of CdHgTe QDs and pave the way for their possible applications in the fields of NIR photodetectors and other optoelectronic devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The successful application of techniques to enhance detection of age marks in biological specimens is of vital importance in fisheries research. This manual documents age determination techniques used by staff at the Woods Hole Laboratory, National Marine Fisheries Service. General information on procedures for preparing anatomical structures is described, together with criteria used to interpret growth patterns and assign ages. Annotated photographs of age structures are provided to illustrate criteria. Detailed procedures are given for the following species: Atlantic herring (Clupea harengus), haddock (Melanogrammus aeglefinus), Atlantic cod (Gadus morhua), pollock (Pollachius virens), silver hake (Merluccius bilinearis), red hake (Urophycis chuss), black sea bass (Centropristis striata), weakfish (Cynoscion regalis), Atlantic mackerel (Scomber scombrus), butterfish (Peprilus triacanthus), redfish (Sebastes fasciatus), summer flounder (Paralichthys dentatus), winter flounder (Pseudopleuronectes americanus), witch flounder (Glyptocephalus cynoglossus), American plaice (Hippoglossoides platessoides), yellowtail flounder (Limanda ferruginea), surf clam (Spisula solidissima), and ocean quahog (Arctica islandica). (PDF file contains 142 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The food habits of 20 species of pelagic nekton were investigated from collections made with small-mesh purse seines from 1979-84 off Washington and Oregon. Four species (spiny dogfish, Squalus acanthias; soupfin shark, Galeorhinus zyopterus; blue shark, Prionace glauca; and cutthroat trout, Salmo clarki) were mainly piscivorous. Six species (coho salmon, Oncorhynchus kisutch; chinook salmon, O. tshawytscha; black rockfish, Sebastes melanops; yellowtail rockfish, S. f1avidus; sablefish, Anoplopoma fimbria; and jack mackerel, Trachurus symmetricus) consumed both nektonic and planktonic organisms. The remaining species (market squid, Loligo opalescens; American shad, Alosa sapidissima; Pacific herring, Clupea harengus pallasi; northern anchovy, Engraulis mordax; pink salmon, O. gorbuscha; surf smelt, Hypomesus pretiosus; Pacific hake, Merluccius productus; Pacific saury, Cololabis saira; Pacific mackerel, Scomber japonicus; and medusafish, Icichthys lockingtom) were primarily planktonic feeders. There were substantial interannual, seasonal, and geographic variations in the diets of several species due primarily to changes in prey availability. Juvenile salmonids were not commonly consumed by this assemblage of fishes (PDF file contains 36 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

建立了缺陷吸收升温致薄膜激光损伤模型,该模型从热传导方程出发,考虑了缺陷内部的温度分布以及向薄膜的传导过程,通过引入散射系数简化了Mie散射理论得出的吸收截面.对电子束蒸发沉积的ZrO2:Y2O3单层膜进行了激光破坏实验,薄膜样品的损伤是缺陷引起的,通过辉光放电质谱法对薄膜制备材料的纯度分析发现材料中的主要杂质元素为铂,其含量为0.9%.利用缺陷损伤模型对损伤过程进行了模拟,理论模型和实验结果取得了较好的一致性.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the Atlantic white-sided dolphin (Lagenorhynchus acutus) is one of the most common dolphins off New England, little has been documented about its diet in the western North Atlantic Ocean. Current federal protection of marine mammals limits the supply of animals for investigation to those incidentally caught in the nets of commercial fishermen with observers aboard. Stomachs of 62 L. acutus were examined; of these 62 individuals, 28 of them were caught by net and 34 were animals stranded on Cape Cod. Most of the net-caught L. acutus were from the deeper waters of the Gulf of Maine. A single stomach was from the continental slope south of Georges Bank. At least twenty-six fish species and three cephalopod species were eaten. The predominant prey were silver hake (Merluccius bilinearis), spoonarm octopus (Bathypolypus bairdii), and haddock (Melanogrammus aeglefinus). The stomach from a net-caught L. acutus on the continental slope contained 7750 otoliths of the Madeira lanternfish (Ceratoscopelus maderensis). Sand lances (Ammodytes spp.) were the most abundant (541 otoliths) species in the stomachs of stranded L. acutus. Seasonal variation in diet was indicated; pelagic Atlantic herring (Clupea harengus) was the most important prey in summer, but was rare in winter. The average length of fish prey was approximately 200 mm, and the average mantle length of cephalopod prey was approximately 50 mm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is evident from several field experiments with vertical longlines and archival tags, as well as concurrent studies of predator-prey relationships, that adult specimens of the deep-water flatfish Greenland halibut (Reinhardtius hippoglossoides) make regular excursions several hundred meters through the water column. The distribution of longline catches within the water column is confined to a well-defined depth layer overlapping with the distribution of blue whiting (Micromesistius poutassou), an important prey species, and depth recordings from archival tags overlap with Atlantic herring (Clupea harengus), the other major fish prey. The degree of pelagic use varies with fish size as well as seasons. Smaller individuals are found further off the bottom, and pelagic activity is greatest during early autumn. Interaction with pelagic prey species can influence results from bottom trawl surveys.