899 resultados para Clinical relevance
Resumo:
The insulin-receptor substrate family plays important roles in cellular growth, signaling, and survival. Two new members of this family have recently been isolated: IRS5/Dok4 and IRS6/Dok5. This study examines the expression of IRS5/DOK4 in a panel of lung cancer cell lines and tumor specimens. The results demonstrate that expression of IRS5/DOK4 is frequently altered with both elevated and decreased expression in non-small-cell lung cancer (NSCLC) tumor specimens. The altered expression of IRS5/DOK4 observed in tumor samples is not due to aberrant methylation. In vitro cell culture studies demonstrate that treatment of NSCLC cell lines with the histone deacetylase inhibitor trichostatin A (TSA) upregulates IRS5/DOK4. This finding indicates that expression is regulated epigenetically at the level of chromatin remodeling. Chromatin immunoprecipitation experiments confirm that the IRS5/DOK4 promoter has enhanced histone hyperacetylation following treatments with TSA. Finally, hypoxia was demonstrated to downregulate IRS5/DOK4 expression. This expression was restored by TSA. The clinical relevance of altered IRS5/DOK4 expression in NSCLC requires fur ther evaluation.
Resumo:
Akt, a Serine/Threonine protein kinase, mediates growth factor-associated cell survival. Constitutive activation of Akt (phosphorylated Akt, P-Akt) has been observed in several human cancers, including lung cancer and may be associated with poor prognosis and chemotherapy and radiotherapy resistance. The clinical relevance of P-Akt in non-small cell lung cancer (NSCLC) is not well described. In the present study, we examined 82 surgically resected snap-frozen and paraffin-embedded stage I to IIIA NSCLC samples for P-Akt and Akt by Western blotting and for P-Akt by immunohistochemistry. P-Akt protein levels above the median, measured using reproducible semiquantitative band densitometry, correlated with a favorable outcome (P = 0.007). Multivariate analysis identified P-Akt as a significant independent favorable prognostic factor (P = 0.004). Although associated with a favorable prognosis, high P-Akt levels correlated with high tumor grade (P = 0.02). Adenocarcinomas were associated with low P-Akt levels (P = 0.039). Akt was not associated with either outcome or clinicopathologic variables. Cytoplasmic (CP-Akt) and nuclear (NP-Akt) P-Akt tumor cell staining was detected in 96% and 42% of cases, respectively. Both CP-Akt and NP-Akt correlated with well-differentiated tumors (P = 0.008 and 0.017, respectively). NP-Akt also correlated with nodal metastases (P = 0.022) and squamous histology (P = 0.037). These results suggest P-Akt expression is a favorable prognostic factor in NSCLC. Immunolocalization of P-Akt, however, may be relevant as NP-Akt was associated with nodal metastases, a known poor prognostic feature in this disease. P-Akt may be a potential novel therapeutic target for the management of NSCLC. © 2005 American Association for Cancer Research.
Resumo:
The epidermal growth factor receptor (EGFR) is commonly expressed in non-small-cell lung cancer (NSCLC) and promotes a host of mechanisms involved in tumorigenesis. However, EGFR expression does not reliably predict prognosis or response to EGFR-targeted therapies. The data from two previous studies of a series of 181 consecutive surgically resected stage I-IIIA NSCLC patients who had survived in excess of 60 days were explored. Of these patients, tissue was available for evaluation of EGFR in 179 patients, carbonic anhydrase (CA) IX in 177 patients and matrix metalloproteinase-9 (MMP-9) in 169 patients. We have previously reported an association between EGFR expression and MMP-9 expression. We have also reported that MMP-9 (P=0.001) and perinuclear (p)CA IX (P=0.03) but not EGFR expression were associated with a poor prognosis. Perinuclear CA IX expression was also associated with EGFR expression (P<0.001). Multivariate analysis demonstrated that coexpression of MMP-9 with EGFR conferred a worse prognosis than the expression of MMP-9 alone (P<0.001) and coexpression of EGFR and pCA IX conferred a worse prognosis than pCA IX alone (P=0.05). A model was then developed where the study population was divided into three groups: group 1 had expression of EGFR without coexpression of MMP-9 or pCA IX (number=21); group 2 had no expression of EGFR (number=75); and group 3 had coexpression of EGFR with pCA IX or MMP-9 or both (number=70). Group 3 had a worse prognosis than either groups 1 or 2 (P=0.0003 and 0.027, respectively) and group 1 had a better prognosis than group 2 (P=0.036). These data identify two cohorts of EGFR-positive patients with diametrically opposite prognoses. The group expressing either EGFR and or both MMP-9 and pCA IX may identify a group of patients with activated EGFR, which is of clinical relevance with the advent of EGFR-targeted therapies. © 2004 Cancer Research UK.
Resumo:
The majority of non-small cell lung cancer (NSCLC) patients present with advanced disease and with a 5 year survival rate of <15% for these patients, treatment outcomes are considered extremely disappointing. Standard chemotherapy regimens provide some improvement to ~40% of patients. However, intrinsic and acquired chemoresistance are a significant problem and hinder sustained long term benefits of such treatments. Advances in proteomic and genomic profiling have increased our understanding of the aberrant molecular mechanisms that are driving an individual's tumour. The increased sensitivity of these technologies has enabled molecular profiling at the stage of initial biopsy thus paving the way for a more personalised approach to the treatment of cancer patients. Improvements in diagnostics together with a wave of new targeted small molecule inhibitors and monoclonal antibodies have revolutionised the treatment of cancer. To date there are essentially three targeted agents approved for clinical use in NSCLC. The tyrosine kinase inhibitor (TKI) erlotinib, which targets the epidermal growth factor receptor (EGFR) TK domain, has proven to be an effective treatment strategy in patients who harbour activating mutations in the EGFR TK domain. Bevacizumab a monoclonal antibody targeting the vascular endothelial growth factor (VEGF) can improve survival, response rates, and progression-free survival when used in combination with chemotherapy. Crizotinib, a small-molecule drug, inhibits the tyrosine kinase activity of the echinoderm microtubule-associated protein-like 4 anaplastic lymphoma kinase (EML4-ALK) fusion protein, resulting in decreased tumour cell growth, migration, and invasiveness in patients with locally advanced or metastatic NSCLC. The clinical relevance of several other targeted agents are under investigation in distinct molecular subsets of patients with key "driver" mutations including: KRAS, HER2, BRAF, MET, PIK3CA, AKT1,MAP2K1, ROS1 and RET. Often several pathways are activated simultaneously and crosstalk between pathways allows tumour cells to escape the inhibition of a single targeted agent. This chapter will explore the clinical development of currently available targeted therapies for NSCLC as well as those in clinical trials and will examine the synergy between cytotoxic therapies.
Resumo:
Early diagnosis and the ability to predict the most relevant treatment option for individuals is essential to improve clinical outcomes for non-small cell lung cancer (NSCLC) patients. Adenocarcinoma (ADC), a subtype of NSCLC, is the single biggest cancer killer and therefore an urgent need to identify minimally invasive biomarkers to enable early diagnosis. Recent studies, by ourselves and others, indicate that circulating miRNA s have potential as biomarkers. Here we applied global profiling approaches in serum from patients with ADC of the lung to explore if miRNA s have potential as diagnostic biomarkers. This study involved RNA isolation from 80 sera specimens including those from ADC patients (equal numbers of stages 1, 2, 3, and 4) and age- and gender-matched controls (n = 40 each). Six hundred and sixty-seven miRNA s were co-analyzed in these specimens using TaqMan low density arrays and qPCR validation using individual miRNA s. Overall, approximately 390 and 370 miRNA s were detected in ADC and control sera, respectively. A group of 6 miRNA s, miR-30c-1* (AU C = 0.74; P < 0.002), miR-616(AU C = 0.71; P = 0.001), miR-146b-3p (AU C = 0.82; P < 0.0001), miR-566 (AU C = 0.80; P < 0.0001), miR-550 (AU C = 0.72; P = 0.0006), and miR-939 (AU C = 0.82; P < 0.0001) was found to be present at substantially higher levels in ADC compared with control sera. Conversely, miR-339-5p and miR-656 were detected at substantially lower levels in ADC sera (co-analysis resulting in AU C = 0.6; P = 0.02). Differences in miRNA profile identified support circulating miRNA s having potential as diagnostic biomarkers for ADC. More extensive studies of ADC and control serum specimens are warranted to independently validate the potential clinical relevance of these miRNA s as minimally invasive biomarkers for ADC.
Resumo:
Background Large segmental defects in bone do not heal well and present clinical challenges. This study investigated modulation of the mechanical environment as a means of improving bone healing in the presence of bone morphogenetic protein (BMP)-2. Although the influence of mechanical forces on the healing of fractures is well established, no previous studies, to our knowledge, have described their influence on the healing of large segmental defects. We hypothesized that bone-healing would be improved by initial, low-stiffness fixation of the defect, followed by high-stiffness fixation during the healing process. We call this reverse dynamization. Methods A rat model of a critical-sized femoral defect was used. External fixators were constructed to provide different degrees of stiffness and, importantly, the ability to change stiffness during the healing process in vivo. Healing of the critical-sized defects was initiated by the implantation of 11 mg of recombinant human BMP (rhBMP)-2 on a collagen sponge. Groups of rats receiving BMP-2 were allowed to heal with low, medium, and high-stiffness fixators, as well as under conditions of reverse dynamization, in which the stiffness was changed from low to high at two weeks. Healing was assessed at eight weeks with use of radiographs, histological analysis, microcomputed tomography, dual x-ray absorptiometry, and mechanical testing. Results Under constant stiffness, the low-stiffness fixator produced the best healing after eight weeks. However, reverse dynamization provided considerable improvement, resulting in a marked acceleration of the healing process by all of the criteria of this study. The histological data suggest that this was the result of intramembranous, rather than endochondral, ossification. Conclusions Reverse dynamization accelerated healing in the presence of BMP-2 in the rat femur and is worthy of further investigation as a means of improving the healing of large segmental bone defects. Clinical Relevance These data provide the basis of a novel, simple, and inexpensive way to improve the healing of critical-sized defects in long bones. Reverse dynamization may also be applicable to other circumstances in which bonehealing is problematic.
Resumo:
BACKGROUND: Over the past 10 years, the use of saliva as a diagnostic fluid has gained attention and has become a translational research success story. Some of the current nanotechnologies have been demonstrated to have the analytical sensitivity required for the use of saliva as a diagnostic medium to detect and predict disease progression. However, these technologies have not yet been integrated into current clinical practice and work flow. CONTENT: As a diagnostic fluid, saliva offers advantages over serum because it can be collected noninvasively by individuals with modest training, and it offers a cost-effective approach for the screening of large populations. Gland-specific saliva can also be used for diagnosis of pathology specific to one of the major salivary glands. There is minimal risk of contracting infections during saliva collection, and saliva can be used in clinically challenging situations, such as obtaining samples from children or handicapped or anxious patients, in whom blood sampling could be a difficult act to perform. In this review we highlight the production of and secretion of saliva, the salivary proteome, transportation of biomolecules from blood capillaries to salivary glands, and the diagnostic potential of saliva for use in detection of cardiovascular disease and oral and breast cancers. We also highlight the barriers to application of saliva testing and its advancement in clinical settings. SUMMARY: Saliva has the potential to become a first-line diagnostic sample of choice owing to the advancements in detection technologies coupled with combinations of biomolecules with clinical relevance. (C) 2011 American Association for Clinical Chemistry
Resumo:
Over the past 10 years, the use of saliva as a diagnostic fluid has gained attention and has become a translational research success story. Some of the current nanotechnologies have been demonstrated to have the analytical sensitivity required for the use of saliva as a diagnostic medium to detect and predict disease progression. However, these technologies have not yet been integrated into current clinical practice and work flow. As a diagnostic fluid, saliva offers advantages over serum because it can be collected noninvasively by individuals with modest training, and it offers a cost-effective approach for the screening of large populations. Gland-specific saliva can also be used for diagnosis of pathology specific to one of the major salivary glands. There is minimal risk of contracting infections during saliva collection, and saliva can be used in clinically challenging situations, such as obtaining samples from children or handicapped or anxious patients, in whom blood sampling could be a difficult act to perform. In this review we highlight the production of and secretion of saliva, the salivary proteome, transportation of biomolecules from blood capillaries to salivary glands, and the diagnostic potential of saliva for use in detection of cardiovascular disease and oral and breast cancers. We also highlight the barriers to application of saliva testing and its advancement in clinical settings. Saliva has the potential to become a first-line diagnostic sample of choice owing to the advancements in detection technologies coupled with combinations of biomolecules with clinical relevance.
Resumo:
Human saliva harbours proteins of clinical relevance and about 30% of blood proteins are also present in saliva. This highlights that saliva can be used for clinical applications just as urine or blood. However, the translation of salivary biomarker discoveries into clinical settings is hampered by the dynamics and complexity of the salivary proteome. This review focuses on the current status of technological developments and achievements relating to approaches for unravelling the human salivary proteome. We discuss the dynamics of the salivary proteome, as well as the importance of sample preparation and processing techniques and their influence on downstream protein applications; post-translational modifications of salivary proteome and protein: protein interactions. In addition, we describe possible enrichment strategies for discerning post-translational modifications of salivary proteins, the potential utility of selected-reaction-monitoring techniques for biomarker discovery and validation, limitations to proteomics and the biomarker challenge and future perspectives. In summary, we provide recommendations for practical saliva sampling, processing and storage conditions to increase the quality of future studies in an emerging field of saliva clinical proteomics. We propose that the advent of technologies allowing sensitive and high throughput proteome-wide analyses, coupled to well-controlled study design, will allow saliva to enter clinical practice as an alternative to blood-based methods due to its simplistic nature of sampling, non-invasiveness, easy of collection and multiple collections by untrained professionals and cost-effective advantages.
Resumo:
Background: Plasma D-dimer tests are currently used to exclude deep vein thrombosis and pulmonary embolism. Human saliva has numerous advantages over blood as a diagnostic sample. The aims of our study were to develop a reliable immunoassay to detect D-dimer levels in saliva, and to determine the correlation between salivary and blood D-dimer levels. Results/methodology: Saliva and blood samples were collected from 40 healthy volunteers. We developed a AlphaLISA((R)) immunoassay with acceptable analytical performances to quantify D-dimer levels in the samples. The median salivary D-dimer levels were 138.1 ng/ml (morning) and 140.7 ng/ml (afternoon), and the plasma levels were 75.0 ng/ml. Salivary D-dimer levels did not correlate with plasma levels (p = 0.61). Conclusion: For the first time, we have quantified D-dimer levels and found twofold increase in saliva (p < 0.05) than in plasma. Further studies are required to demonstrate the clinical relevance/utility of salivary D-dimer in patients with confirmed deep vein thrombosis and/or pulmonary embolism.
Resumo:
PURPOSE The purpose of this study was to demonstrate the potential of near infrared (NIR) spectroscopy for characterizing the health and degenerative state of articular cartilage based on the components of the Mankin score. METHODS Three models of osteoarthritic degeneration induced in laboratory rats by anterior cruciate ligament (ACL) transection, meniscectomy (MSX), and intra-articular injection of monoiodoacetate (1 mg) (MIA) were used in this study. Degeneration was induced in the right knee joint; each model group consisted of 12 rats (N = 36). After 8 weeks, the animals were euthanized and knee joints were collected. A custom-made diffuse reflectance NIR probe of 5-mm diameter was placed on the tibial and femoral surfaces, and spectral data were acquired from each specimen in the wave number range of 4,000 to 12,500 cm(-1). After spectral data acquisition, the specimens were fixed and safranin O staining (SOS) was performed to assess disease severity based on the Mankin scoring system. Using multivariate statistical analysis, with spectral preprocessing and wavelength selection technique, the spectral data were then correlated to the structural integrity (SI), cellularity (CEL), and matrix staining (SOS) components of the Mankin score for all the samples tested. RESULTS ACL models showed mild cartilage degeneration, MSX models had moderate degeneration, and MIA models showed severe cartilage degenerative changes both morphologically and histologically. Our results reveal significant linear correlations between the NIR absorption spectra and SI (R(2) = 94.78%), CEL (R(2) = 88.03%), and SOS (R(2) = 96.39%) parameters of all samples in the models. In addition, clustering of the samples according to their level of degeneration, with respect to the Mankin components, was also observed. CONCLUSIONS NIR spectroscopic probing of articular cartilage can potentially provide critical information about the health of articular cartilage matrix in early and advanced stages of osteoarthritis (OA). CLINICAL RELEVANCE This rapid nondestructive method can facilitate clinical appraisal of articular cartilage integrity during arthroscopic surgery.
Resumo:
BACKGROUND: Magnetic resonance imaging (MRI) is being increasingly utilized to define pathology and guide treatment in patients presenting with wrist pain. The clinical relevance of MRI identified or confirmed pathology has not been established, and the prevalence of asymptomatic MRI pathology is not known. METHODS: Twenty volunteers with no previous wrist injury or symptoms underwent bilateral MRI wrist studies in this exploratory diagnostic study. The scans were reported by an experienced musculoskeletal radiologist and an experienced wrist surgeon, with a consensus reached on each report. RESULTS: There were 3.15 positive MRI findings per wrist. There were 126 positive findings (range 1-6 per wrist). Sixty-eight ganglia were identified. Eleven ligament tears or perforations were also identified. Increased joint fluid was seen at many sites, most frequently adjacent to the piso-triquetral joint. CONCLUSION: The accuracy of MRI in identifying triangular fibrocartilage complex tears, intercarpal ligament tears and carpal bone osteonecrosis is rapidly being refined. Positive MRI findings are common and may be coincidental in patients with wrist pain. MRI findings need to be correlated closely with clinical examination and history.
Resumo:
Study Design: Comparative analysis Background: Calculations of lower limbs kinetics are limited by floor-mounted force-plates. Objectives: Comparison of hip joint moments, power and mechanical work on the prosthetic limb of a transfemoral amputee calculated by inverse dynamics using either the ground reactions (force-plates) or knee reactions (transducer). Methods: Kinematics, ground reactions and knee reactions were collected using a motion analysis system, two force-plates and a multi-axial transducer mounted below the socket, respectively. Results: The inverse dynamics using ground reactions under-estimated the peaks of hip energy generation and absorption occurring at 63 % and 76 % of the gait cycle (GC) by 28 % and 54 %, respectively. This method over-estimated a phase of negative work at the hip (from 37 %GC to 56 %GC) by 24%. It under-estimated the phases of positive (from 57 %GC to 72 %GC) and negative (from 73 %GC to 98 %GC) work at the hip by 11 % and 58%, respectively. Conclusions: A transducer mounted within the prosthesis has the capacity to provide more realistic kinetics of the prosthetic limb because it enables assessment of multiple consecutive steps and a wide range of activities without issues of foot placement on force-plates. CLINICAL RELEVANCE The hip is the only joint that an amputee controls directly to set in motion the prosthesis. Hip joint kinetics are associated with joint degeneration, low back pain, risks of fall, etc. Therefore, realistic assessment of hip kinetics over multiple gait cycles and a wide range of activities is essential.
Resumo:
Purpose This study tested the effectiveness of a pressure ulcer (PU) prevention bundle in reducing the incidence of PUs in critically ill patients in two Saudi intensive care units (ICUs). Design A two-arm cluster randomized experimental control trial. Methods Participants in the intervention group received the PU prevention bundle, while the control group received standard skin care as per the local ICU policies. Data collected included demographic variables (age, diagnosis, comorbidities, admission trajectory, length of stay) and clinical variables (Braden Scale score, severity of organ function score, mechanical ventilation, PU presence, and staging). All patients were followed every two days from admission through to discharge, death, or up to a maximum of 28 days. Data were analyzed with descriptive correlation statistics, Kaplan-Meier survival analysis, and Poisson regression. Findings The total number of participants recruited was 140: 70 control participants (with a total of 728 days of observation) and 70 intervention participants (784 days of observation). PU cumulative incidence was significantly lower in the intervention group (7.14%) compared to the control group (32.86%). Poisson regression revealed the likelihood of PU development was 70% lower in the intervention group. The intervention group had significantly less Stage I (p = 002) and Stage II PU development (p = 026). Conclusions Significant improvements were observed in PU-related outcomes with the implementation of the PU prevention bundle in the ICU; PU incidence, severity, and total number of PUs per patient were reduced. Clinical Relevance Utilizing a bundle approach and standardized nursing language through skin assessment and translation of the knowledge to practice has the potential to impact positively on the quality of care and patient outcome.
Resumo:
Little is known about the neuronal changes that occur within the lateral amygdala (LA) following fear extinction. In fear extinction, the repeated presentation of a conditioned stimulus (CS), in the absence of a previously paired aversive unconditioned stimulus (US), reduces fear elicited by the CS. Fear extinction is an active learning process that leads to the formation of a consolidated extinction memory, however it is fragile and prone to spontaneous recovery and renewal under environmental changes such as context. Understanding the neural mechanisms underlying fear extinction is of great clinical relevance, as psychological treatments of several anxiety disorders rely largely on extinction-based procedures and relapse is major clinical problem. This study investigated plasticity in the LA following fear memory reactivation in rats with and without extinction training. Phosphorylated MAPK (p44/42 ERK/MAPK), a protein kinase required in the amygdala for fear learning and its extinction, was used as a marker for neuronal plasticity. Rats (N = 11) underwent a Pavlovian auditory fear conditioning and extinction paradigm, and later received a single conditioned stimulus presentation to reactivate the fear memory. Results showed more pMAPK+ expressing neurons in the LA following extinction-reactivation compared to control rats, with the largest number of pMAPK+ neurons counted in the ventral LA, especially including the ventro-lateral subdivision (LAvl). These findings indicate that LA subdivision specific plasticity occurs to the conditioned fear memory in the LAvl following extinction-reactivation. These findings provide important insight into the organisation of fear memories in the LA, and pave the way for future research in the memory mechanisms of fear extinction and its pathophysiology.